

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Table of Contents

	Overview

	Stories

	Output description

	api/v2/stories/single

	api/v2/stories/list

	Query Parameters

	Example

	api/v2/stories/update (PUT)

	Input Description

	Example

	api/v2/stories/cliff

	Query Parameters

	Example

	api/v2/stories/nytlabels

	Query Parameters

	Example

	Sentences

	api/v2/sentences/list

	Query Parameters

	Example

	Downloads

	api/v2/downloads/single/

	Query Parameters

	api/v2/downloads/list/

	Query Parameters

	Tags

	api/v2/stories/put_tags (PUT)

	Query Parameters

	Input Description

	Example

	api/v2/tags/create (POST)

	Input Description

	Example

	api/v2/tags/update (PUT)

	Input Description

	Example

	api/v2/tag_sets/create (POST)

	Input Description

	Example

	api/v2/tag_sets/update (PUT)

	Input Description

	Example

	Feeds

	api/v2/feeds/create (POST)

	Input Description

	Example

	api/v2/feeds/update (PUT)

	Input Description

	Example

	api/v2/feeds/scrape (POST)

	Input Description

	Example

	api/v2/feeds/scrape_status

	Input Description

	Output Description

	Example

	Media

	api/v2/media/create (POST)

	Input Description

	Output Description

	Example

	api/v2/media/update (PUT)

	Input Description

	Example

	api/v2/media/list_suggestions

	Query Parameters

	Example

	api/v2/media/mark_suggestion

	Input Description

	Example

	Users

	api/v2/users/list

	Query Parameters

	Example

	api/v2/users/update (PUT)

	Input Description

	Example

	api/v2/users/list_roles

	Query Parameters

	Example

Overview

This document describes API calls for administrative users. These calls are intended for users running their own install of Media Cloud. Public users of the mediacloud.org API should refer instead to the Media Cloud API 2.0 Spec. Please refer to the Media Cloud API 2.0 spec for general information on how requests should be constructed.

Stories

A story represents a single published piece of content. Each unique URL downloaded from any syndicated feed within a single media source is represented by a single story. For example, a single New York Times newspaper story is a Media Cloud story, as is a single Instapundit blog post. Only one story may exist for a given title for each 24 hours within a single media source.

The story_text of a story is either the content of the description field in the syndicated field or the extracted
text of the content downloaded from the story’s URL at the collect_date, depending on whether our full text RSS
detection system has determined that the full text of each story can be found in the RSS of a given media source.

Output description

The following table describes the meaning and origin of fields returned by the admin API for both api/v2/stories/single and api/v2/stories/list. (The admin API also returns all the fields available through the general API. Refer to the Media Cloud API 2.0 Spec for a list and description of these fields.)

| Field | Description
| ——————- | ———————————————————————-
| title | The story title as defined in the RSS feed. May contain HTML (depending on the source).
| description | The story description as defined in the RSS feed. May contain HTML (depending on the source).
| full_text_rss | If 1, the text of the story was obtained through the RSS feed.
If 0, the text of the story was obtained by extracting the article text from the HTML.
| story_text | The text of the story.
If full_text_rss is non-zero, this is formed by stripping HTML from the title and description and concatenating them.
If full_text_rss is zero, this is formed by extracting the article text from the HTML.
 Not included by default - see below.
| story_sentences | A list of sentences in the story.
Generated from story_text by splitting it into sentences and removing any duplicate sentences occurring within the same source for the same week.
 Not included by default - see below.
| raw_1st_download | The contents of the first HTML page of the story.
Available regardless of the value of full_text_rss.
Note: only provided if the raw_1st_download parameter is non-zero.

api/v2/stories/single

| URL | Function
| ———————————— | ——————————————————
| api/v2/stories/single/<stories_id> | Return the story for which stories_id equals <stories_id>

api/v2/stories/list

| URL | Function
| ——————————- | ———————————
| api/v2/stories/list | Return multiple processed stories

Query Parameters

| Parameter | Default | Notes
| —————————- | ——- | ——————————————————————————
| last_processed_stories_id | 0 | Return stories in which the processed_stories_id is greater than this value.
| rows | 20 | Number of stories to return.
| raw_1st_download | 0 | If non-zero, include the full HTML of the first page of the story.
| sentences | 0 | If non-zero, include the story_sentences field described above in the output.
| text | 0 | If non-zero, include the story_text field described above in the output.
| q | null | If specified, return only results that match the given Solr query. Only one q parameter may be included.
| fq | null | If specified, filter results by the given Solr query. More than one fq parameter may be included.

The last_processed_stories_id parameter can be used to page through these results. The API will return stories with a
processed_stories_id greater than this value. To get a continuous stream of stories as they are processed by Media Cloud,
the user must make a series of calls to api/v2/stories/list in which last_processed_stories_id for each
call is set to the processed_stories_id of the last story in the previous call to the API.

Note: stories_id and processed_stories_id are separate values. The order in which stories are processed is different than the stories_id order. The processing pipeline involves downloading, extracting, and vectoring stories. Requesting by the processed_stories_id field guarantees that the user will receive every story (matching the query criteria if present) in
the order it is processed by the system.

The q and fq parameters specify queries to be sent to a Solr server that indexes all Media Cloud stories. The Solr
server provides full text search indexing of each sentence collected by Media Cloud. All content is stored as individual
sentences. The api/v2/stories/list call searches for sentences matching the q and / or fq parameters if specified and
the stories that include at least one sentence returned by the specified query. Refer to the stories_public/list access point in the
Media Cloud API 2.0 Spec for a more detailed description of the q and fq parameters.

Example

The output of these calls is in exactly the same format as for the api/v2/stories/single call.

URL: https://api.mediacloud.org/api/v2/stories/list?last_processed_stories_id=8625915

Return a stream of all stories processed by Media Cloud, greater than the last_processed_stories_id.

URL: https://api.mediacloud.org/api/v2/stories/list?last_processed_stories_id=2523432&q=text:obama+AND+media_id:1

Return a stream of all stories from The New York Times mentioning 'obama' greater than the given last_processed_stories_id.

api/v2/stories/update (PUT)

URL	Description
——————-	——————————-
api/v2/stories/update	update an existing story

This call updates a single existing story.

Input Description

Field	Description
—————–	—————————————-
title	story title
url	story url
guid	story globally unique identifier
language	story primary language, ISO 2 letter code
description	plain text summary or full text of story
publish_date	publication date of story, in ISO format: ‘2017-09-25 04:32:10’
confirm_date	boolean indicating whether the story date has been manually confirmed as correct
undateable	boolean indicating whether the story should be considered undateable (eg. a wikipedia page)

Example

URL: https://api.mediacloud.org/api/v2/stories/update

Input:

{
 "stories_id": 123456,
 "publish_date": "2017-09-25 04:32:10",
 "confirm_date": 1
}

Output:

{ "success": 1 }

api/v2/stories/cliff

| URL | Function
| ———————- | ——————————————————
| api/v2/stories/cliff | Return raw CLIFF annotation for one or more stories

Query Parameters

| Parameter | Notes
| ————- | ——————————————————————————
| stories_id | One or more story ID for which to fetch raw CLIFF annotation.

Example

Fetch raw CLIFF annotation for stories 1, 2 and a nonexistent story 3:

URL: https://api.mediacloud.org/api/v2/stories/cliff?stories_id=1&stories_id=2&stories_id=3

Response:

[
 {
 "stories_id": 1,
 "cliff": {
 "milliseconds": 231,
 "results": {
 "organizations": "..."
 },
 "status": "ok",
 "version": "2.3.0"
 }
 },
 {
 "stories_id": 2,
 "cliff": {
 "milliseconds": 231,
 "results": {
 "organizations": "..."
 },
 "status": "ok",
 "version": "2.3.0"
 }
 },
 {
 "stories_id": 3,
 "cliff": "story does not exist"
 }
]

api/v2/stories/nytlabels

| URL | Function
| ————————– | ——————————————————
| api/v2/stories/nytlabels | Return raw NYTLabels annotation for one or more stories

Query Parameters

| Parameter | Notes
| ————- | ——————————————————————————
| stories_id | One or more story ID for which to fetch raw NYTLabels annotation.

Example

Fetch raw NYTLabels annotation for stories 1, 2 and a nonexistent story 3:

URL: https://api.mediacloud.org/api/v2/stories/nytlabels?stories_id=1&stories_id=2&stories_id=3

Response:

[
 {
 "stories_id": 1,
 "nytlabels": {
 "allDescriptors": [
 "..."
],
 "descriptors3000": [
 "..."
],
 "...": "..."
 }
 },
 {
 "stories_id": 2,
 "nytlabels": {
 "allDescriptors": [
 "..."
],
 "descriptors3000": [
 "..."
],
 "...": "..."
 }
 },
 {
 "stories_id": 3,
 "nytlabels": "story does not exist"
 }
]

Sentences

The story_text of every story processed by Media Cloud is parsed into individual sentences. Duplicate sentences within
the same media source in the same week are dropped (the large majority of those duplicate sentences are
navigational snippets wrongly included in the extracted text by the extractor algorithm).

api/v2/sentences/list

Query Parameters

| Parameter | Default | Notes
| ——— | —————- | —————————————————————-
| q | n/a | q (“query”) parameter which is passed directly to Solr
| fq | null | fq (“filter query”) parameter which is passed directly to Solr
| start | 0 | Passed directly to Solr
| rows | 1000 | Passed directly to Solr
| sort | publish_date_asc | publish_date_asc, publish_date_desc, or random

This call first fetches matching stories from solr and then returns all sentences belonging to those stories that
match any of the keywords in the solr query.

Other than ‘sort’, these parameters are passed directly through to Solr (see above). The sort parameter must be
one of the listed above and determines the order of the sentences returned. The rows parameter determines the number
of stories from which the stories are pulled, so the number of sentences returned should always be more than the
rows parameter.

Example

Fetch sentences containing the stem ‘vaccin*’

URL: https://api.mediacloud.org/api/v2/sentences/list?q=vaccin*

[
 {
 "language": "en",
 "media_id": 13,
 "publish_date": "2008-05-12 06:26:00",
 "sentence": "Families will make case for vaccine link to autism",
 "sentence_number": 0,
 "stories_id": 22191,
 "story_language": "en",
 "story_sentences_id": 7905030540
 },
 {
 "language": "en",
 "media_id": 13,
 "publish_date": "2008-05-12 06:26:00",
 "sentence": "WASHINGTON - The Institute of Medicine said in 2004 there was no credible evidence to show that vaccines containing the preservative thimerosal led to autism in children.",
 "sentence_number": 1,
 "stories_id": 22191,
 "story_language": "en",
 "story_sentences_id": 7905030541
 },
 {
 "language": "en",
 "media_id": 13,
 "publish_date": "2008-05-12 06:26:00",
 "sentence": "Attorneys for the boys will attempt to show the boys were happy, healthy and developing normally -- but, after being exposed to vaccines with thimerosal, they began to regress.",
 "sentence_number": 5,
 "stories_id": 22191,
 "story_language": "en",
 "story_sentences_id": 7905030545
 },
]

Downloads

The provides access to the downloads table.

Note: Downloads are an internal implementation detail. Most users will be better served by interacting with the API at the story level and should not use this access point.

The fields of the returned objects include all fields in the downloads table within Postgresql plus ‘raw_content’ which contains the raw HTML is the download was successful. (If the download was not successful ‘raw_content’ is omitted.

api/v2/downloads/single/

| URL | Function
| ——————————– | ————————————————————-
| api/v2/downloads/single/<downloads_id> | Return the downloads source in which downloads_id equals <downloads_id>

Query Parameters

None.

api/v2/downloads/list/

| URL | Function
| ——————- | —————————–
| api/v2/downloads/list | Return multiple downloads

Query Parameters

| Parameter | Default | Notes
| ——————————— | ——- | —————————————————————–
| last_downloads_id | 0 | Return downloads sources with a downloads_id greater than this value
| rows | 20 | Number of downloads sources to return. Cannot be larger than 100

Tags

These calls allow users to edit tag data, including both the metadata of the tags themselves and their associations with stories, sentences, and media.

api/v2/stories/put_tags (PUT)

| URL | Function
| —————————- | ————————————————–
| api/v2/stories/put_tags | Add tags to a story. Must be a PUT request.

Query Parameters

| Parameter | Default | Notes
| ——————————— | ——- | —————————————————————–
| clear_tag_sets | 0 | If true, delete all tags in ‘add’ tag_sets other than the added tags

Input Description

Input for this call should be a JSON document with a list of records, each with a stories_id key and tag keys (see bwlow). Each record may also contain an action key which can have the value of either add or remove; if not specified, the default action is add.

To associate a story with more than one tag, include multiple different records with that story’s id.
A single call can include multiple stories as well as multiple tags. Users are encouraged to batch writes for multiple stories into a single call to avoid the web server overhead of many small web service calls.

The tag can be specified with using a tags_id key or by specifying a tag and a tag_set key. If the latter form
is used, a new tag or tag_set will be created if ti does not already exist for the given value.

If the clear_tags parameter is set to 1, this will call will delete all tag associations for the given stories
for each tag_set included in the list of tags other than the tags added by this call.

Example

URL: https://api.mediacloud.org/aip/v2/stories/put_tags

Input:

[
 {
 "stories_id": 123456,
 "tags_id": "789123",
 "action": "remove"
 }
 {
 "stories_id": 123456,
 "tag": "japan",
 "tag_set": "gv_country"
 }
]

Output:

{ "success": 1 }

api/v2/tags/create (POST)

URL	Function
——————————	——————–
api/v2/tags/create	Create the given tag

Input Description

Field	Description
————-	—————————————-
tag	New name for the tag.
tag_sets_id	Id of parent tag set.
label	New label for the tag.
description	New description for the tag.
show_on_media	Show as an option for searching media sources
show_on_stories	Show as an option for searching media sources
is_static	True if this is a tag whose contents should be expected to remain static over time

Example

https://api.mediacloud.org/api/v2/tags/create

Input:

{
 "tag": "sample_tag",
 "label": "Sample Tag",
 "description": "This is a sample tag for an API example.",
 "show_on_media": 0,
 "show_on_stories": 0,
 "is_static": 0,
 "tag_sets_id": 123
}

Output:

{ "tag":
 {
 "tags_id": 123,
 "tag": "sample_tag",
 "label": "Sample Tag",
 "description": "This is a sample tag for an API example.",
 "show_on_media": 0,
 "show_on_stories": 0,
 "is_static": 0
 }
}

api/v2/tags/update (PUT)

URL	Function
——————————	——————–
api/v2/tags/update	Update the given tag

Input Description

See api/v2/tags/create above. The update call also requires a tags_id field

Example

https://api.mediacloud.org/api/v2/tags/update

Input:

{
 "tags_id": 123,
 "tag": "sample_tag_updated"
}

Output:

{ "tag":
 {
 "tags_id": 123,
 "tag": "sample_tag_updated",
 "label": "Sample Tag",
 "description": "This is a sample tag for an API example.",
 "show_on_media": 0,
 "show_on_stories": 0,
 "is_static": 0
 }
}

api/v2/tag_sets/create (POST)

URL	Function
————————————-	—————————————-
api/v2/tag_sets/create	Create a new tag set

Input Description

Field	Description
————-	——————————–
name	New name for the tag set.
label	New label for the tag set.
description	New description for the tag set.

Example

https://api.mediacloud.org/api/v2/tag_sets/update/

Input:

{
 "nane": "sample_tag_set",
 "label": "Sample Tag Set",
 "description": "This is a sample tag set for an API example"
}

Output:

{
 "tag_set":
 {
 "tag_sets_id": 456,
 "nane": "sample_tag_set",
 "label": "Sample Tag Set",
 "description": "This is a sample tag set for an API example"
 }
}

api/v2/tag_sets/update (PUT)

URL	Function
————————————-	—————————————-
api/v2/tag_sets/update	Update the given tag set

Input Description

See tags/create above. The tag_sets/update call also requires a tag_sets_id field.

Example

https://api.mediacloud.org/api/v2/tag_sets/update

Input:

{
 "tag_sets_id": 456,
 "nane": "sample_tag_set_update",
}

Output:

{
 "tag_set":
 {
 "tag_sets_id": 456,
 "nane": "sample_tag_set_update",
 "label": "Sample Tag Set",
 "description": "This is a sample tag set for an API example"
 }
}

Feeds

api/v2/feeds/create (POST)

URL	Description
——————-	—————–
api/v2/feeds/create	create a new feed

Input Description

Field	Description
———	————————————————————————————–
media_id	id of the parent medium (required)
name	human readable name for the feed
url	feed URL (required)
type	Feed type, e.g. syndicated or web_page
active	true if the feed is to be active (has to be fetched periodically), false otherwise

This call adds a new feed to an existing media source. The syndicated feed type should be used for RSS, RDF, and ATOM feeds. The web_page feed type will just download the given URL once a week and treat the URL as a new story each time. The active = true (the default) will cause the feed to be regularly crawled. Feeds should be added with active = false if they are functional and may have been crawled at one point but are no longer crawled now (for instance, feeds that have not had a new story in many months are sometimes marked as inactive). Feeds should be deactivated (active should be set to false) if they are being added merely to indicate to the automatic feed scraping process that the given URL should not be added to the given media source as a feed.

Example

Create a new feed in media_id 1:

URL: https://api.mediacloud.org/api/v2/feeds/create

Input:

{
 "media_id": 1,
 "name": "New New Times Feed",
 "url": "http://nytimes.com/new/feed",
 "type": "syndicated",
 "active": true
}

Output:

{ "feed":
 {
 "media_id": 1,
 "name": "New New Times Feed",
 "url": "http://nytimes.com/new/feed",
 "type": "syndicated",
 "active": true
 }
}

api/v2/feeds/update (PUT)

URL	Description
——————-	———————–
api/v2/feeds/update	update an existing feed

Input Description

See api/v2/feeds/create above. The input document can contain any subset of fields. The document must also include a feeds_id field. The media_id field cannot be changed.

Example

Update the active of feed 1 to false.

URL: https://api.mediacloud.org/api/v2/feeds/update

Input:

{
 "feeds_id": 1,
 "active": false
}

Output:

{ "feed":
 {
 "media_id": 1,
 "name": "New New Times Feed",
 "url": "http://nytimes.com/new/feed",
 "type": "syndicated",
 "active": false
 }
}

api/v2/feeds/scrape (POST)

URL	Description
——————-	———————————–
api/v2/feeds/scrape	scrape a media source for new feeds

This end point scrapes through the web site of the given media source to try to discover new feeds.

This call queues a scraping job on the backend, which can take a few minutes or a few hours to complete. You can
check the status of the scraping process for a given media source by calling api/v2/feeds/scrape_status. The call
will return the state of the job created to scrape the media source.

Input Description

Field	Description
——–	—————————————-
media_id	id of media source to discover new feeds for

Example

URL: https://api.medicloud.org/api/v2/feeds/scrape

Input:

{
 "media_id": 1
}

Output:

{
 "job_states": [
 {
 "media_id": 1,
 "job_states_id": 1,
 "last_updated": "2017-01-26 14:27:04.781095",
 "message": null,
 "state": "queued"
 }
]
}

api/v2/feeds/scrape_status

URL	Description
——————-	———————————–
api/v2/feeds/scrape_status	check the status of feed scraping jobs

This end point lists the status of feed scraping jobs (see api/v2/feeds/scrape above). Feed scraping jobs
can be started manually for a specific media source, via a scheduled job (every media source is rescraped every
six months at least), or by adding a media source for the first time.

If called with a media_id input, the call returns all jobs for the given media source, sorted by the
latest first. If called with no input, the call returns the last 100 feed scraping jobs from all
media sources.

Input Description

Field	Description
——–	—————————————-
media_id	id of media source to query for feed scraping jobs

Output Description

Field	Description
——–	—————————————-
state	one of queued, running, completed, or error
message	error message of state is ‘error’
last_updated	date of last state change
media_id	id of media being scraped

Example

URL: https://api.medicloud.org/api/v2/feeds/scrape_status

Input:

{
 "media_id": 1
}

Output:

{
 "job_states": [
 {
 "media_id": 1,
 "job_states_id": 1,
 "last_updated": "2017-01-26 14:27:04.781095",
 "message": null,
 "state": "queued"
 }
]
}

Media

api/v2/media/create (POST)

URL	Description
——————-	————————-
api/v2/media/create	create a new media source

This call will create one or more media sources with the given information, if no existing media source matching the input already exists. The call will return a status indicating whether each media source already exists along with the media_id of either the new or the existing media source.

Input Description

Field	Description
—————–	—————————————-
url	home page of media source (required)
name	unique, human readable name for source (default scraped)
foreign_rss_links	true if the link elements in the source’s RSS feeds are largely links to other sites, for aggregators for instance (default false)
content_delay	delay URL downloads for this feed this many hours (default 0)
feeds	list of syndicated feed URLs (default none)
tags_ids	list of tags to which to associate the media source (default none)
editor_notes	notes about the source for internal media cloud consumption (default none)
public_notes	notes about the source for public consumption (default none)
is_monitored	true if the source is manually monitored for completeness by the Media Cloud team (default false)

The end point accepts either a single JSON record in the above format or a list of records in the same format.

The only required field for a media source is the URL. The name will be assigned to the HTML title at the media source URL if no name is provided. A feed scraping job will be queued if no feeds are specified.

The foreign_rss_links field should be used only if the link elements themselves in the source’s feeds point to external urls. This flag tells the spider not to treat spidered stories matching those external links as if they belong to this media source.

The content_delay field is useful for sources that make many changes to their stories immediately after first publication Media Cloud only collects each story once, so if the story will change dramatically it can be best to wait a few hour before downloading it.

If an existing media source is found for a given record:

	any tags in tags_id will be added to the media source and

	if the source contains no active feeds, either the listed feeds will be added to the media source or, if no feeds are listed, a feed scraping job will be queued.

Other than the above, no other updates will be made to the existing media source during this call.

Output Description

Field	Description
——–	————————————–
status	new, existing, or error
media_id	id of the new or existing media source
url	URL of processed record
error	error message for error status URLs

The output is always a list of records with the fields described above. The output will include one record for each input record.

Example

URL: https://api.mediacloud.org/api/v2/media/create (PUT)

Input:

[
 {
 "name": "New York Times",
 "url": "http://nytimes.com"
 },
 {
 "name": "Yew Tork Nimes",
 "url": "http://ytnimes.com"
 }
]

Output:

[
 {
 "status:": "existing",
 "media_id": 1,
 "url": "http://nytimes.com"
 },
 {
 "status": "new",
 "media_id": 123456,
 "url": "http://ytnimes.com"
 }
]

api/v2/media/update (PUT)

URL	Description
——————-	——————————-
api/v2/media/update	update an existing media source

This call updates a single existing media source.

Input Description

See api/v2/media/create end point above for possible input fields. The input record must also include a media_id field with an id of an existing media source. The feeds and tags_ids fields may not be include in an update call (use the api/v2/media/put_tags and api/v2/feeds/* calls instead).

Example

URL: https://api.mediacloud.org/api/v2/media/update

Input:

{
 "media_id": 123456,
 "url": "http://www.ytnimes.com"
}

Output:

{ "success": 1 }

api/v2/media/list_suggestions

URL	Description
——————————-	————————————–
api/v2/media/list_suggestions	list suggestions for new media sources

Suggestions will be listed in the order that they were submitted.

Query Parameters

Parameter	Default	Notes
———	——-	—————————————-
all	false	list all suggestions, including those that have been approved or rejected
tags_id	null	return only suggestions associated with the given tags_id

Example

URL: https://api.mediacloud.org/api/v2/media/list_suggestions

Output:

[
 {
 "email": "hroberts@cyber.law.harvard.edu",
 "auth_users_id": 123,
 "url": "http://mediacloud.org",
 "feed_url": "http://mediacloud.org/feed/",
 "reason": "Media Cloud is a great project",
 "tags_ids": [123, 456],
 "date_submitted": "2016-11-20 07:42:00",
 "date_marked": "",
 "media_suggestions_id": 1,
 "status": "pending",
 "mark_reason": "",
 "media_id": null
 }
]

api/v2/media/mark_suggestion

URL	Description
——————————-	———————————
api/v2/media/mark_suggestion	approve a media source suggestion

Mark a media suggestion as having been approved or rejected. Marking a suggestion as approve or rejected will change the status of the suggestions to ‘approved’ or ‘rejected’ and make it not appear in the results listed by api/v2/media/suggestions/list unless the all parameter is submitted.

Note that marking a suggestion as approved does not automatically create the media source as well. If you want to create the media source in addition to marking the suggestion, you have to call api/v2/media/create.

Input Description

Field	Description
——————–	—————————————-
media_suggestions_id	suggestion id (required)
status	‘pending’, ‘approved’ or ‘rejected’ (required)
mark_reason	reason for approving or rejecting
media_id	associated the given media source with an ‘approved’ suggestion (required for ‘approved’)

Example

URL: https://api.mediacloud.org/api/v2/media/mark_suggestion

Input:

[
 {
 "media_suggestions_id": 1,
 "status": "approved",
 "mark_reason": "Media Cloud is great",
 "media_id": 2
 }
]

Output:

{ "success": 1 }

Users

api/v2/users/single/

| URL | Function
| ——————————– | ————————————————————-
| api/v2/users/single/<auth_users_id> | Return a single user

Query Parameters

None.

Output

See api/v2/users/list below for sample output.

api/v2/users/list

URL	Description
——————————-	————————————–
api/v2/users/list	list authentication users

Query Parameters

| Parameter | Default | Notes |
| ——— | ——- | —————————————- |
| auth_users_id | null | return specified users, specify more than once to return a list of users
| search | null | search for users by email or full_name

Example

URL: https://api.mediacloud.org/api/v2/users/list?search=foo

Output:

[
 {
 "link_ids": {
 "current": 116554
 },
 "users": [
 {
 "active": true,
 "auth_users_id": 6308,
 "created_date": "2018-09-05 17:32:29.075184",
 "email": "foo@foo.bar",
 "full_name": "Sample User",
 "max_topic_stories": 100000,
 "weekly_requests_limit": 10000,
 "notes": "For demonstrating the user api
 "roles": [
 {
 "auth_users_id": 6308,
 "role": "search"
 }
]
 },
]
]

api/v2/users/update (PUT)

URL	Description
——————-	——————————-
api/v2/users/update	update an existing user

This call updates a single existing user.

Input Description

Field	Description
—————–	—————————————-
auth_users_id	user id (required)
full_name	full name of user
email	user email
notes	user submitted description of account usage
active	active state of user
roles	list of permission roles
max_topic_stories	max size of max_stories setting for topics
weekly_requests_limit	max number of requests per week

The roles field should point to an array of strings, each of which is the
‘role’ value for a role listed by api/v2/users/list_roles. If the roles
field is specified, the user’s roles will be reset to consist only of the
roles included in the given list. If weekly_requests_limit is set to 0,
the user will be able to submit an unlimited number of requests.

All of the input fields other than
auth_users_id are optional. Any fields not specified will not be updated.

Example

URL: https://api.mediacloud.org/api/v2/users/update

Input:

{
 "auth_users_id": 123456,
 "notes": "Some update notes,
 "roles": ['admin'],
 "active": 1,
 "weekly_requests_limit": 20000
}

Output:

{ "success": 1 }

api/v2/users/delete (PUT)

URL	Description
——————-	——————————-
api/v2/users/delete	delete an existing user

This call deletes a single existing user.

Input Description

Field	Description
—————–	—————————————-
auth_users_id	user id (required)

Example

URL: https://api.mediacloud.org/api/v2/users/update

Input:

{
 "auth_users_id": 123456,
}

Output:

{ "success": 1 }

api/v2/users/list_roles

URL	Description
——————————-	————————————–
api/v2/users/list_roles	list authentication user roles

Query Parameters

none.

Example

URL: https://api.mediacloud.org/api/v2/users/list_roles

Output:

{
 "roles": [
 {
 "auth_roles_id": 1,
 "description": "Do everything, including editing users.",
 "role": "admin"
 },
 {
 "auth_roles_id": 2,
 "description": "Read access to admin interface.",
 "role": "admin-readonly"
 },
 {
 "auth_roles_id": 4,
 "description": "Add / edit media; includes feeds.",
 "role": "media-edit"
 },
 {
 "auth_roles_id": 5,
 "description": "Add / edit stories.",
 "role": "stories-edit"
 },
 {
 "auth_roles_id": 7,
 "description": "Access to the stories api",
 "role": "stories-api"
 },
 {
 "auth_roles_id": 227,
 "description": "Access to the /search pages",
 "role": "search"
 },
 {
 "auth_roles_id": 6,
 "description": "Topic mapper; includes media and story editing",
 "role": "tm"
 },
 {
 "auth_roles_id": 647,
 "description": "Topic mapper; excludes media and story editing",
 "role": "tm-readonly"
 }
]
}

Table of Contents

	Overview

	Authentication

	Example

	Python Client

	API URLs

	Supported Languages

	Errors

	Request Limits

	Media

	api/v2/media/single/

	Query Parameters

	Example

	api/v2/media/list/

	Query Parameters

	Example

	api/v2/media/submit_suggestion - POST

	Input Description

	Example

	Media Health

	api/v2/mediahealth/list

	Query Parameters

	Output description

	Example

	Feeds

	api/v2/feeds/single

	Query Parameters

	Example

	api/v2/feeds/list

	Query Parameters

	Example

	Stories

	Output description

	api/v2/stories_public/single

	Example

	api/v2/stories_public/list

	Query Parameters

	Example

	api/v2/stories_public/count

	Query Parameters

	Example

	api/v2/stories_public/tag_count

	Query Parameters

	Example

	api/v2/stories_public/word_matrix

	Query Parameters

	Output Description

	Sentences

	api/v2/sentences/count

	api/v2/sentences/field_count

	Word Counting

	api/v2/wc/list

	Query Parameters

	Example

	Tags and Tag Sets

	api/v2/tags/single/

	Query Parameters

	Output description

	Example

	api/v2/tags/list/

	Query Parameters

	Example

	api/v2/tag_sets/single/

	Query Parameters

	Output description

	Example

	api/v2/tag_sets/list/

	Query Parameters

	Example

	Registration and Authentication

	Register

	api/v2/auth/register (POST)

	Required role

	Input Description

	Output Description

	Registration was successful

	Registration has failed

	Example

	api/v2/auth/activate (POST)

	Required role

	Input Description

	Output Description

	Activating the user was successful

	Activating the user has failed

	Example

	api/v2/auth/resend_activation_link (POST)

	Required role

	Input Description

	Output Description

	Resending the activation email was successful

	Resending the activation email has failed

	Example

	Reset password

	api/v2/auth/send_password_reset_link (POST)

	Required role

	Input Description

	Output Description

	Sending the password reset link was successful

	Sending the password reset link has failed

	Example

	api/v2/auth/reset_password (POST)

	Required role

	Input Description

	Output Description

	Resetting the user’s password was successful

	Resetting the user’s password has failed

	Example

	Log in

	api/v2/auth/login (POST)

	Required role

	Input Description

	Output Description

	User was found

	User was not found

	Example

	User Profile

	api/v2/auth/profile (GET)

	Required role

	Output Description

	Example

	api/v2/auth/change_password (POST)

	Required role

	Input Description

	Output Description

	Changing the user’s password was successful

	Changing the user’s password has failed

	Example

	api/v2/auth/reset_api_key (POST)

	Required role

	Output Description

	Resetting user’s API key was successful

	Resetting user’s API key has failed

	Example

	Stats

	api/v2/stats/list

	Query Parameters

	Output Description

	Example

	Util

	api/v2/util/is_syndicated_ap (POST)

	Input Description

	Output Description

	Example

	Extended Examples

	Output Format / JSON

	Create a CSV file with all media sources.

	Grab all processed stories from US Mainstream Media as a stream

	Grab stories by querying stories_public/list

	Grab all stories in The New York Times during October 2012

	Find the media_id of The New York Times

	Grab stories by querying stories_public/list

	Get word counts for top words for sentences matching ‘trayvon’ in US Mainstream Media during April 2012

	Find the media collection

	Make a request for the word counts based on tags_id_media, sentence text and date range

	Get word counts for top words for sentences with the tag ‘odd’ in tag_set = ‘ts’

	Find the tag_sets_id for ’ts’

	Find the tags_id for ’odd’ given the tag_sets_id

	Request a word count using the tags_id

	Grab stories from 10 January 2014 with the tag ‘foo:bar’

	Find the tag_sets_id for ’foo’

	Find the tags_id for ’bar’ given the tag_sets_id

	Grab stories by querying stories_public/list

Overview

Authentication

Every call below includes a key parameter which will authenticate the user to the API service. The key parameter is excluded from the examples in the below sections for brevity.

To get a key, register for a user:

https://core.mediacloud.org/login/register

Once you have an account go here to see your key:

https://core.mediacloud.org/admin/profile

Example

https://api.mediacloud.org/api/v2/media/single/1?key=KRN4T5JGJ2A

Python Client

A Python client [https://github.com/c4fcm/MediaCloud-API-Client] for our API is now available. Users who develop in
Python will probably find it easier to use this client than to make web requests directly. The Python client is
available here [https://github.com/c4fcm/MediaCloud-API-Client].

API URLs

Note: by default the API only returns a subset of the available fields in returned objects. The returned fields are those that we consider to be the most relevant to users of the API. If the all_fields parameter is provided and is non-zero, then a more complete list of fields will be returned. For space reasons, we do not list the all_fields parameter on individual API descriptions.

Supported Languages

The following language are supported (by 2 letter language code):

	ca (Catalan)

	da (Danish)

	de (German)

	en (English)

	es (Spanish)

	fi (Finnish)

	fr (French)

	ha (Hausa)

	hi (Hindi)

	hu (Hungarian)

	it (Italian)

	ja (Japanese)

	lt (Lithuanian)

	nl (Dutch)

	no (Norwegian)

	pt (Portuguese)

	ro (Romanian)

	ru (Russian)

	sv (Swedish)

	tr (Turkish)

	zh (Chinese)

Errors

The Media Cloud returns an appropriate HTTP status code for any error, along with a JSON document in the following format:

{ "error": "error message" }

Request Limits

Each user is limited to 1,000 API calls and 20,000 stories returned in any 7 day period. Requests submitted beyond this
limit will result in a status 403 error. Users who need access to more requests should email info@mediacloud.org.

Media

The Media API calls provide information about media sources. A media source is a publisher of content, such as the New York
Times or Instapundit. Every story belongs to a single media source. Each media source can have zero or more feeds.

api/v2/media/single/

| URL | Function
| ——————————– | ————————————————————-
| api/v2/media/single/<media_id> | Return the media source in which media_id equals <media_id>

Query Parameters

None.

Example

Fetching information on The New York Times

URL: https://api.mediacloud.org/api/v2/media/single/1

Response:

[
 {
 "url": "http://nytimes.com",
 "name": "New York Times",
 "media_id": 1,
 "is_healthy": 1,
 "is_monitored": 1,
 "public_notes": "all the news that's fit to print",
 "editor_nnotes": "first media source",
 "num_stories_90": 123,
 "num_sentences_90": 1234,
 "start_date": "2016-01-01",
 "media_source_tags": [
 {
 "tag_sets_id": 5,
 "show_on_stories": null,
 "tags_id": 8875027,
 "show_on_media": 1,
 "description": "Top U.S. mainstream media according Google Ad Planner's measure of unique monthly users.",
 "tag_set": "collection",
 "tag": "ap_english_us_top25_20100110",
 "label": "U.S. Mainstream Media"
 }
],
 "activities": [
 {
 "date": "2015-08-12 18:17:35.922523",
 "field": "name",
 "new_value": "New York Times",
 "old_value": "nytimes.com"
 }
]
 }
]

api/v2/media/list/

| URL | Function
| ——————- | —————————–
| api/v2/media/list | Return multiple media sources

Query Parameters

| Parameter | Default | Notes
| —————— | ——- | —————————————————————–
| last_media_id | 0 | Return media sources with a media_id greater than this value
| rows | 20 | Number of media sources to return. Cannot be larger than 100
| name | none | Name of media source for which to search
| tag_name | none | Name of tag for which to return belonging media
| timespans_id | null | Return media within the given timespan
| topic_mode | null | If set to ‘live’, return media from live topics
| tags_id | null | Return media associate with the given tag
| q | null | Return media with at least one sentence that matches the Solr query
| include_dups | 0 | Include duplicate media among the results
| unhealthy | none | Only return media that are currently marked as unhealthy (see mediahealth/list)
| similar_media_id | none | Return media with the most tags in common
| sort | id | sort order of media: id, or num_stories |

If the name parameter is specified, the call returns only media sources that match a case insensitive search specified value. If the specified value is less than 3 characters long, the call returns an empty list.

By default, media are sorted by media_id. If the sort parameter is set to ‘num_stories’, the media will be sorted
by decreasing number of stories in the past 90 days.

By default, calls that specify a name parameter will only return media that are not duplicates of
some other media source. Media Cloud has many media sources that are either subsets of other media sources or are
just holders for spidered media from a given media source, both of which are marked as duplicate media and are not
included in the default results. If the ‘include_dups’ parameter is set to 1, those duplicate sources will be
included in the results.

If the timespans_id parameter is specified, return media within the given time slice,
sorted by descending inlink_count within the timespan. If topic_mode is set to
‘live’, return media from the live topic stories rather than from the frozen snapshot.

If the q parameter is specified, return only media that include at least on sentence that matches the given Solr query. For a description of the Solr query format, see the stories_public/list call.

Example

URL: https://api.mediacloud.org/api/v2/media/list?last_media_id=1&rows=2

Output format is the same as for api/v2/media/single above.

api/v2/media/submit_suggestion - POST

| URL | Function
| ——————- | —————————–
| api/v2/media/submit_suggestion | Suggest a media source for Media Cloud to crawl

This API end point allows the user to send a suggest a new media source to the Media Cloud team for regular crawling.

Input Description

Field	Description
——	————
url	URL of the media source home page (required)
name	Human readable name of media source (optional)
feed_url	URL of RSS, RDF, or Atom syndication feed for the source (optional)
reason	Reason media source should be added to the system (optional)
tags_ids	list of suggested tags to add to the source (optional)

Example

URL: https://api.mediacloud.org/api/v2/media/submit_suggestion

Input:

{
 "name": "Cameroon Tribue",
 "url": "http://www.cameroon-tribune.cm"
}

Output:

{ "success": 1 }

Media Health

The Media Health API call provides information about the health of a media source, meaning to what degree we are
capturing all of the stories published by that media source. Media Cloud collects its data via
automatically detected RSS feeds on the open web. This means first that the system generally has data for a given
media source from the time we first enter that source into our database. Second, Media Cloud data for a given media
source is only as good as the set of feeds we have for that source. Our feed scraper is not perfect and so sometimes
misses feeds it should be collecting. Third, feeds change over time. We periodically rescrape every media source
for new feeds, but this takes time and is not perfect.

The only way we have of judging the health is judging the relative number of stories over time. This media call
provides a set of metrics that compare the current number of stories being collected by the media source with
the number of stories collected over the past 90 days, and also compares coverage over time with the expected
volume. More details are in the field descriptions below

api/v2/mediahealth/list

| URL | Function
| ——————————– | ————————————————————-
| api/v2/mediahealth/list | Return media health data for the given media sources

Query Parameters

| Parameter | Default | Notes
| ——————————— | ——- | —————————————————————–
| media_id | none | Return health data for the given media sources. May be specified multiple times.

Output description

| Field | Description
| ——————- | ———————————————————————-
| media_id | The id of the media source
| is_healthy | Is the media source currently returning at least 25% of the 90 day averages of stories and sentences
| has_active_feed | Does the media source have at least one active syndicated feed (which may not be returning any stories)
| num_stories | Number of stories collected yesterday
| num_stories_w | Average number of stories collected in the last 7 days
| num_stories_90 | Average number of stories collected in the last 90 days
| num_stories_y | Average number of stories collected in the last year
| num_sentences | Number of sentences collected yesterday
| num_sentences_w | Average number of sentences collected in the last 7 days
| num_sentences_90 | Average number of sentences collected in the 90 days
| num_sentences_y | Average number of sentences collected in the last year
| expected_stories | Average number of stories collected for each of the 20 days with the highest number of stories
| expected_sentences| Average number of sentences collected or each of the 20 days with the highest number of sentences
| start_date | First week on which at least 25% of expected_stories and expected_sentences were collected
| end_date | Last week on which at least 25% of expected_stories and expected_sentences were collected
| coverage_gaps | Number of weeks between start_date and end_date for which fewer than 25% of expected_stories or expected_sentences were collected
| coverage_gaps_list| List of weeks between start_date and end_date for which fewer than 25% of expected_stories or expected_sentences were collected

Example

Fetch media health information for media source 4438:

https://api.mediacloud.org/api/v2/mediahealth/list?media_id=4438

Response:

[
 {
 "media_id": "4438",
 "is_healthy": 1,
 "has_active_feed": 1,
 "num_stories": 42,
 "num_stories_w": "28.57",
 "num_stories_90": "30.54",
 "num_stories_y": "33.00",
 "num_sentences": 1200,
 "num_sentences_w": "873.86",
 "num_sentences_90": "877.16",
 "num_sentences_y": "926.83",
 "start_date": "2011-01-03 00:00:00-05",
 "end_date": "2016-02-22 00:00:00-05",
 "expected_stories": "49.97",
 "expected_sentences": "1166.22",
 "coverage_gaps": 1,
 "coverage_gaps_list": [
 {
 "media_id": "4438",
 "stat_week": "2013-12-23 00:00:00-05",
 "num_stories": "12.43",
 "num_sentences": "350.29",
 "expected_stories": "49.97",
 "expected_sentences": "1166.22",
 }
]
 }
]

Feeds

A feed is either a syndicated feed, such as an RSS feed, or a single web page. Each feed is downloaded between once
an hour and once a day depending on traffic. Each time a syndicated feed is downloaded, each new URL found in the feed is
added to the feed’s media source as a story. Each time a web page feed is downloaded, that web page itself is added as
a story for the feed’s media source.

Each feed belongs to a single media source. Each story can belong to one or more feeds from the same media source.

api/v2/feeds/single

| URL | Function
| ——————————– | ——————————————————–
| api/v2/feeds/single/<feeds_id> | Return the feed for which feeds_id equals <feeds_id>

Query Parameters

None.

Example

URL: https://api.mediacloud.org/api/v2/feeds/single/1

[
 {
 "name": "Bits",
 "url": "http://bits.blogs.nytimes.com/rss2.xml",
 "feeds_id": 1,
 "type": "syndicated",
 "media_id": 1
 }
]

api/v2/feeds/list

| URL | Function
| ——————- | ————————–
| api/v2/feeds/list | Return multiple feeds

Query Parameters

| Parameter | Default | Notes
| ——————– | ———- | —————————————————————–
| last_feeds_id | 0 | Return feeds in which feeds_id is greater than this value
| rows | 20 | Number of feeds to return. Cannot be larger than 100
| media_id | (required) | Return feeds belonging to the media source

Example

URL: https://api.mediacloud.org/api/v2/feeds/list?media_id=1

Output format is the same as for api/v2/feeds/single above.

Stories

A story represents a single published piece of content. Each unique URL downloaded from any syndicated feed within
a single media source is represented by a single story. For example, a single New York Times newspaper story is a
Media Cloud story, as is a single Instapundit blog post. Only one story may exist for a given title for each 24 hours
within a single media source.

Output description

The following table describes the meaning and origin of fields returned by both api/v2/stories_public/single and api/v2/stories_public/list.

| Field | Description
| ——————- | ———————————————————————-
| stories_id | The internal Media Cloud ID for the story.
| media_id | The internal Media Cloud ID for the media source to which the story belongs.
| media_name | The name of the media source to which the story belongs.
| media_url | The URL of the media source to which the story belongs.
| publish_date | The publish date of the story as specified in the RSS feed.
| tags | A list of any tags associated with this story, including those written through the write-back api.
| collect_date | The date the RSS feed was actually downloaded.
| url | The URL field in the RSS feed.
| guid | The GUID field in the RSS feed. Defaults to the URL if no GUID is specified in the RSS feed.
| language | The language of the story as detected by the chromium compact language detector library.
| title | The title of the story as found in the RSS feed.
| ap_syndicated | Whether our detection algorithm thinks that this is an English language syndicated AP story

api/v2/stories_public/single

| URL | Function
| ———————————— | ——————————————————
| api/v2/stories_public/single/<stories_id> | Return the story for which stories_id equals <stories_id>

Example

Note: This fetches data on the CC licensed Global Voices story “Myanmar’s new flag and new name” [http://globalvoicesonline.org/2010/10/26/myanmars-new-flag-and-new-name/#comment-1733161] from November 2010.

URL: https://api.mediacloud.org/api/v2/stories_public/single/27456565

[
 {
 "collect_date": "2010-11-24 15:33:39",
 "url": "http://globalvoicesonline.org/2010/10/26/myanmars-new-flag-and-new-name/comment-page-1/#comment-1733161",
 "guid": "http://globalvoicesonline.org/?p=169660#comment-1733161",
 "publish_date": "2010-11-24 04:05:00",
 "media_id": 1144,
 "media_name": "Global Voices Online",
 "media_url": "http://globalvoicesonline.org/",
 "stories_id": 27456565,
 "story_tags": [1234235],
 }
]

api/v2/stories_public/list

| URL | Function
| ——————————- | ———————————
| api/v2/stories_public/list | Return multiple processed stories

Query Parameters

Parameter	Default	Notes
—————————-	———————-	——————————————————————————
last_processed_stories_id	0	Return stories in which the processed_stories_id is greater than this value.
rows	20	Number of stories to return, max 1000.
feeds_id	null	Return only stories that match the given feeds_id, sorted my descending publish date
q	null	If specified, return only results that match the given Solr query. Only one q parameter may be included.
fq	null	If specified, file results by the given Solr query. More than one fq parameter may be included.
sort	processed_stories_id	Returned results sort order. Supported values: processed_stories_id, random
wc	0	if set to 1, include a ‘word_count’ field with each story that includes a count of the most common words in the story
show_feeds	if set to 1, include a ‘feeds’ field with a list of the feeds associated with this story	

The last_processed_stories_id parameter can be used to page through these results. The API will return stories with aprocessed_stories_id greater than this value. To get a continuous stream of stories as they are processed by Media Cloud, the user must make a series of calls to api/v2/stories_public/list in which last_processed_stories_id for each
call is set to the processed_stories_id of the last story in the previous call to the API. A single call can only
return up to 10,000 results, but you can get the full list of results by paging through the full list using
last_processed_stories_id.

Note: stories_id and processed_stories_id are separate values. The order in which stories are processed is different than the stories_id order. The processing pipeline involves downloading, extracting, and vectoring stories. Requesting by the processed_stories_id field guarantees that the user will receive every story (matching the query criteria if present) in
the order it is processed by the system.

The q and fq parameters specify queries to be sent to a Solr server that indexes all Media Cloud stories. The Solr
server provides full text search indexing of each sentence collected by Media Cloud. All content is stored as individual
sentences. The api/v2/stories_public/list call searches for sentences matching the q and / or fq parameters if specified and
the stories that include at least one sentence returned by the specified query.

The q and fq parameters are passed directly through to Solr. Documentation of the format of the q and fq parameters is here [https://mediacloud.org/support/query-guide/].

Below are the fields that may be used as Solr query parameters, for example ‘text:obama AND media_id:1’:

| Field | Description
| ——————– | —————————————————–
| sentence | the text of the sentence
| stories_id | a story ID
| media_id | the Media Cloud media source ID of a story
| publish_date | the publish date of a story
| tags_id_story | the ID of a tag associated with a story
| tags_id_media | the ID of a tag associated with a media source
| processed_stories_id | the processed_stories_id as returned by stories_public/list

Be aware that ‘:’ is usually replaced with ‘%3A’ in programmatically generated URLs.

Solr range queries may only be used within the fq parameter. Using a range query in the main q query will result in
an error.

In addition, there following fields may be entered as pseudo queries within the Solr query:

| Pseudo Query Field | Description
| —————————- | —————————————————–
| topic | a topic id
| timespan | a timespan id
| link_from_tag | a tag id, returns stories linked from stories associated with the tag
| link_to_story | a story id, returns stories that link to the story
| link_from_story | a story id, returns stories that are linked from the story
| link_to_medium | a medium id, returns stories that link to stories within the medium
| link_from_medium | link_from_medium, returns stories that are linked from stories within the medium

To include one of these fields in a larger Solr query, delineate with {~ }, for example:

{~ topic:1 } and media_id:1

The API will translate the given pseudo query into a stories_id: clause in the larger Solr query. So the above query
will be translated into the following, including topic 1 consists of stories with ids 1, 2, 3, and 4.

stories_id:(1 2 3 4) and media_id:1

If ‘-1’ is appended to the timespan query field value, the pseudo query will match stories
from the live topic matching the given time slice rather than from the dump. For example, the following will
live stories from timespan 1234:

{~ timespan:1234-1 }

The link_* pseudo query fields all must be within the same {~ } clause as a timespan query and
return links from the associated timespan. For example, the following returns stories that
link to story 5678 within the specified time slice:

{~ timespan:1234-1 link_to_story:5678 }

Example

The output of these calls is in exactly the same format as for the api/v2/stories_public/single call.

URL: https://api.mediacloud.org/api/v2/stories_public/list?last_processed_stories_id=8625915

Return a stream of all stories processed by Media Cloud, greater than the last_processed_stories_id.

URL: https://api.mediacloud.org/api/v2/stories_public/list?last_processed_stories_id=2523432&q=text:obama+AND+media_id:1

Return a stream of all stories from The New York Times mentioning 'obama' greater than the given last_processed_stories_id.

api/v2/stories_public/count

Query Parameters

| Parameter | Default | Notes
| —————— | —————- | —————————————————————-
| q | n/a | q (“query”) parameter which is passed directly to Solr
| fq | null | fq (“filter query”) parameter which is passed directly to Solr
| split | null | if set to 1 or true, split the counts into date ranges
| split_period | day | return counts for these date periods: day, week, month, year

The q and fq parameters are passed directly through to Solr (see description of q and fq parameters in api/v2/stories_public/list section above).

The call returns the number of stories returned by Solr for the specified query.

If split is specified, split the counts into periods set by split_period.

Example

Count stories containing the word ‘obama’ in The New York Times.

URL: https://api.mediacloud.org/api/v2/stories_public/count?q=obama&fq=media_id:1

{
 "count": 6620
}

Count stories containing ‘africa’ in the New York Times for each week from 2014-01-01 to 2014-03-01:

URL: https://api.mediacloud.org/api/v2/stories_public/count?split=1&split_period=week&q=africa%20AND%20media_id%3A1%20AND%20publish_day%3A%5B2014-01-01T00%3A00%3A00Z%20TO%202014-03-01T00%3A00%3A00Z%5D

{
 "counts": [
 {
 "count": 25,
 "date": "2013-12-30 00:00:00"
 },
 {
 "count": 59,
 "date": "2014-01-06 00:00:00"
 },
 {
 "count": 70,
 "date": "2014-01-13 00:00:00"
 },
 {
 "count": 71,
 "date": "2014-01-20 00:00:00"
 },
 {
 "count": 80,
 "date": "2014-01-27 00:00:00"
 },
 {
 "count": 57,
 "date": "2014-02-03 00:00:00"
 },
 {
 "count": 54,
 "date": "2014-02-10 00:00:00"
 },
 {
 "count": 45,
 "date": "2014-02-17 00:00:00"
 },
 {
 "count": 44,
 "date": "2014-02-24 00:00:00"
 }
]
}

api/v2/stories_public/tag_count

Query Parameters

| Parameter | Default | Notes
| —————— | —————- | —————————————————————-
| q | n/a | q (“query”) parameter which is passed directly to Solr
| fq | null | fq (“filter query”) parameter which is passed directly to Solr
| limit | 1000 | number of tags to fetch from Solr
| tag_sets_id | null | return only tags belonging to this tag set

The q and fq parameters are passed directly through to Solr (see description of q and fq parameters in api/v2/stories_public/list section above).

The call returns list of the tags most commonly associated with stories that match the given query. The limit parameter
s applied before the tag_sets_id parameter, so fewer than limit (or zero) results may be returned for a given tag set even if tags from that tag set are associated with stories matching the query.

Example

Count tags in stories containing the word ‘obama’ in The New York Times.

URL: https://api.mediacloud.org/api/v2/stories_public/tag_count?q=obama&fq=media_id:1&limit=3

[
 {
 "count": 20240,
 "description": "politics and government",
 "is_static": false,
 "label": "politics and government",
 "show_on_media": null,
 "show_on_stories": null,
 "tag": "politics and government",
 "tag_set_label": "nyt_labels",
 "tag_set_name": "nyt_labels",
 "tag_sets_id": 1963,
 "tags_id": 9360836
 },
 {
 "count": 17491,
 "description": "Obama",
 "is_static": false,
 "label": "Obama",
 "show_on_media": null,
 "show_on_stories": null,
 "tag": "Obama",
 "tag_set_label": "cliff_people",
 "tag_set_name": "cliff_people",
 "tag_sets_id": 2389,
 "tags_id": 9362721
 },
 {
 "count": 15904,
 "description": "united states politics and government",
 "is_static": false,
 "label": "united states politics and government",
 "show_on_media": null,
 "show_on_stories": null,
 "tag": "united states politics and government",
 "tag_set_label": "nyt_labels",
 "tag_set_name": "nyt_labels",
 "tag_sets_id": 1963,
 "tags_id": 9360846
 }
]

api/v2/stories_public/word_matrix

Query Parameters

| Parameter | Default | Notes
| —————— | —————- | —————————————————————-
| q | n/a | q (“query”) parameter which is passed directly to Solr
| fq | null | fq (“filter query”) parameter which is passed directly to Solr
| rows | 1000 | number of stories to return from solr, max 100,000
| max_words | n/a | max number of non-zero count word stems to return for each story
| stopword_length | n/a | if set to ‘tiny’, ‘short’, or ‘long’, eliminate stop word list of that length

The q and fq parameters are passed directly through to Solr (see description of q and fq parameters in
api/v2/stories_public/list section above).

If stopword_length is specified, eliminate the ‘tiny’, ‘short’, or ‘long’ list of stopwords from the results, if the
system has stopwords for the language of each story. See Supported Languages for a list of supported languages and their codes.

Output Description

| Field | Description
| —————————- | —————————————————————————–
| word_matrix | a dictionary of stories_ids, each pointing to a dictionary of word counts
| word_list | the list of word stems counted, in the order of the index used for the word counts

The word_matrix is a dictionary with the stories_id as the key and the word count dictionary of as
the value. For each word count dictionary, the key is the word index of the word in the word_list and the
value is the count of the word in that story.

The word list is a list of lists. The overall list includes the stems in the order that is referenced by the
word index in the word_matrix word count dictionary for each story. Each individual list member includes the stem
counted and the most common full word used with that stem in the set.

For the following two stories:

story id 1: ‘foo bar bars’
story id 2: ‘foo bars foos foo’

the returned data would look like:

{
 "word_matrix": {
 "1": {
 "0": 1,
 "1": 2
 },
 "2": {
 "0": 3,
 "1": 1
 }
 },
 "word_list": [
 ["foo", "foo"],
 ["bar", "bars"]
]
}

Sentences

The text of every story processed by Media Cloud is parsed into individual sentences. Duplicate sentences within
the same media source in the same week are dropped (the large majority of those duplicate sentences are
navigational snippets wrongly included in the extracted text by the extractor algorithm).

api/v2/sentences/count

This call has been removed. Consider using api/v2/stories_public/count instead.

api/v2/sentences/field_count

This call has been removed. Consider using api/v2/stories_public/tag_count instead.

Word Counting

api/v2/wc/list

Returns word frequency counts of the most common words in a randomly sampled set of all sentences returned by querying Solr using the q and fq parameters, with stopwords removed by default. Words are stemmed before being counted. For each word, the call returns the stem and the full term most used with the given stem in the specified Solr query (for example, in the below example, ‘democrat’ is the stem that appeared 58 times and ‘democrats’ is the word that was most commonly stemmed into ‘democract’).

Query Parameters

| Parameter | Default | Notes
| ——————- | ——- | —————————————————————-
| q | n/a | q (“query”) parameter which is passed directly to Solr
| fq | null | fq (“filter query”) parameter which is passed directly to Solr
| num_words | 500 | Number of words to return
| sample_size | 1000 | Number of sentences to sample, max 100,000
| random_seed | 1 | Seed value to use when generating random sample
| include_stopwords | 0 | Set to 1 to disable stopword removal
| include_stats | 0 | Set to 1 to include stats about the request as a whole (such as total number of words)

See above /api/v2/stories_public/list for Solr query syntax.

To provide quick results, the API counts words in a randomly sampled set of sentences returned by the given query. By default, the request will sample 1000 sentences and return 500 words. You can make the API sample more sentences. The system takes about one second to process each multiple of 1000 sentences.

Sentences are going to be tokenized into words by identifying each of the sentence’s language and using this language’s sentence splitting algorithm. Additionally, both English and the identified language’s stopwords are going to be removed from results. See Supported Languages for a list of supported languages and their codes.

Setting the ‘stats’ field to true changes the structure of the response, as shown in the example below. Following fields are included in the stats response:

| Field | Description
| ———————— | ——————————————————————-
| num_words_returned | The number of words returned by the call, up to num_words
| num_sentences_returned | The number of sentences returned by the call, up to sample_size
| num_sentences_found | The total number of sentences found by Solr to match the query
| num_words_param | The num_words param passed into the call, or the default value
| sample_size_param | The sample size passed into the call, or the default value

Example

Get word frequency counts for all sentences containing the word 'obama' in The New York Times

URL: https://api.mediacloud.org/api/v2/wc/list?q=obama+AND+media_id:1

[
 {
 "count": 1014,
 "stem": "obama",
 "term": "obama"
 },
 {
 "count": 106,
 "stem": "republican",
 "term": "republican"
 },
 {
 "count": 78,
 "stem": "campaign",
 "term": "campaign"
 },
 {
 "count": 72,
 "stem": "romney",
 "term": "romney"
 },
 {
 "count": 59,
 "stem": "washington",
 "term": "washington"
 },
 {
 "count": 58,
 "stem": "democrat",
 "term": "democrats"
 }
]

Get word frequency counts for all sentences containing the word 'obama' in The New York Times, with
stats data included

URL: https://api.mediacloud.org/api/v2/wc/list?q=obama+AND+media_id:1&stats=1

{
 "stats": {
 "num_words_returned": 5123,
 "num_sentences_returned": 899,
 "num_sentences_found": 899
 },
 "words": [
 {
 "count":1014,
 "stem":"obama",
 "term":"obama"
 },
 {
 "count":106,
 "stem":"republican",
 "term":"republican"
 },
 {
 "count":78,
 "stem":"campaign",
 "term":"campaign"
 },
 {
 "count":72,
 "stem":"romney",
 "term":"romney"
 },
 {
 "count":59,
 "stem":"washington",
 "term":"washington"
 },
 {
 "count":58,
 "stem":"democrat",
 "term":"democrats"
 }
]
}

Tags and Tag Sets

Media Cloud associates tags with media sources, stories, and individual sentences. A tag consists of a short snippet of text,
a tags_id, and tag_sets_id. Each tag belongs to a single tag set. The tag set provides a separate name space for a group
of related tags. Each tag has a unique name (‘tag’) within its tag set. Each tag set consists of a tag_sets_id and a uniaue
name.

For example, the 'gv_country' tag set includes the tags japan, brazil, haiti and so on. Each of these tags is associated with
some number of media sources (indicating that the given media source has been cited in a story tagged with the given country
in a Global Voices post).

api/v2/tags/single/

| URL | Function
| ——————————– | ————————————————————-
| api/v2/tags/single/<tags_id> | Return the tag in which tags_id equals <tags_id>

Query Parameters

None.

Output description

| Field | Description
|———————–|———————————–
| tags_id | Media Cloud internal tag ID
| tags_sets_id | Media Cloud internal ID of the parent tag set
| tag | text of tag, often cryptic
| label | a short human readable label for the tag
| description | a couple of sentences describing the meaning of the tag
| show_on_media | recommendation to show this tag as an option for searching Solr using the tags_id_media
| show_on_stories | recommendation to show this tag as an option for searching Solr using the tags_id_stories
| is_static | if true, users can expect this tag and its associations not to change in major ways
| tag_set_name | name field of associated tag set
| tag_set_label | label field of associated tag set
| tag_set_description | description field of associated tag set

The show_on_media and show_on_stories fields are useful for picking out which tags are likely to be useful for
external researchers. A tag should be considered useful for searching via tags_id_media or tags_id_stories
if show_on_media or show_on_stories, respectively, is set to true for either the specific tag or its parent
tag set.

Example

Fetching information on the tag 8876989.

URL: https://api.mediacloud.org/api/v2/tags/single/8875027

Response:

[
 {
 "tag_sets_id": 5,
 "show_on_stories": null,
 "label": "U.S. Mainstream Media",
 "tag": "ap_english_us_top25_20100110",
 "tags_id": 8875027,
 "show_on_media": 1,
 "description": "Top U.S. mainstream media according Google Ad Planner's measure of unique monthly users.",
 "tag_set_name": "collection",
 "tag_set_label": "Collection",
 "tag_set_description": "Curated collections of media sources"
 }
]

api/v2/tags/list/

| URL | Function
| ——————- | —————————–
| api/v2/tags/list | Return multiple tags

Query Parameters

| Parameter | Default | Notes
| ————— | ———- | —————————————————————–
| last_tags_id | 0 | Return tags with a tags_id is greater than this value
| tag_sets_id | none | Return tags belonging to the given tag sets. The most useful tag set is tag set 5. Can be passed multiple times to return any tag belonging to any of the tag sets.
| rows | 20 | Number of tags to return. Cannot be larger than 100
| public | none | If public=1, return only public tags (see below)
| search | none | Search for tags by text (see below)
| similar_tags_id | none | return list of tags with a similar

If set to 1, the public parameter will return only tags that are generally useful for public consumption. Those tags are defined as tags for which show_on_media or show_on_stories is set to true for either the tag
or the tag’s parent tag_set. As described below in tags/single, a public tag can be usefully searched
using the Solr tags_id_media field if show_on_media is true and by the tags_id_stories field if
show_on_stories is true.

If the search parameter is set, the call will return only tags that match a case insensitive search for
the given text. The search includes the tag and label fields of the tags plus the names and label
fields of the associated tag sets. So a search for ‘politics’ will match tags whose tag or
label field includes ‘politics’ and also tags belonging to a tag set whose name or label field includes
‘politics’. If the search parameter has less than three characters, an empty result set will be
returned.

Example

URL: https://api.mediacloud.org/api/v2/tags/list?rows=2&tag_sets_id=5&last_tags_id=8875026

api/v2/tag_sets/single/

| URL | Function
| ————————————– | ————————————————————-
| api/v2/tag_sets/single/<tag_sets_id> | Return the tag set in which tag_sets_id equals <tag_sets_id>

Query Parameters

None.

Output description

| Field | Description
|———————–|———————————–
| tags_sets_id | Media Cloud internal ID of the tag set
| name | text of tag set, often cryptic
| label | a short human readable label for the tag
| description | a couple of sentences describing the meaning of the tag
| show_on_media | recommendation to show this tag as an option for searching Solr using the tags_id_media
| show_on_stories | recommendation to show this tag as an option for searching Solr using the tags_id_stories

The show_on_media and show_on_stories fields are useful for picking out which tags are likely to be useful for
external researchers. A tag should be considered useful for searching via tags_id_media or tags_id_stories
if show_on_media or show_on_stories, respectively, is set to true for either the specific tag or its parent
tag set.

Example

Fetching information on the tag set 5.

URL: https://api.mediacloud.org/api/v2/tag_sets/single/5

Response:

[
 {
 "tag_sets_id": 5,
 "show_on_stories": null,
 "name": "collection",
 "label": "Collections",
 "show_on_media": null,
 "description": "Curated collections of media sources. This is our primary way of organizing our media sources -- almost every media source in our system is a member of one or more of these curated collections. Some collections are manually curated, and others are generated using quantitative metrics."
 }
]

api/v2/tag_sets/list/

| URL | Function
| ———————– | —————————–
| api/v2/tag_sets/list | Return all tag_sets

Query Parameters

| Parameter | Default | Notes
| —————— | ——- | —————————————————————–
| last_tag_sets_id | 0 | Return tag sets with a tag_sets_id greater than this value
| rows | 20 | Number of tag sets to return. Cannot be larger than 100

None.

Example

URL: https://api.mediacloud.org/api/v2/tag_sets/list

Registration and Authentication

Register

api/v2/auth/register (POST)

URL	Function
———————-	——————–
api/v2/auth/register	Register a new user.

Required role

admin.

Input Description

Field	Description
————————-	———————————————————————–
email	(string) Email of new user.
password	(string) Password of new user.
full_name	(string) Full name of new user.
notes	(string) User’s explanation on how user intends to use Media Cloud.
subscribe_to_newsletter	(integer) Whether or not user wants to subscribe to our mailing list.
activation_url	(string) Client’s URL used for user account activation.

Asking user to re-enter password and comparing the two values is left to the client.

Client should prevent automated registrations with a CAPTCHA.

After successful registration, user can not immediately log in as the user needs to activate their account via email first. User will be send an email with a link to activation_url and the following GET parameters:

	email – user’s email to be used as a parameter to auth/activate;

	activation_token – user’s activation token to be used as a parameter to auth/activate.

Output Description

Registration was successful

{
 "success": 1
}

After successful registraction, user is sent an email inviting him to open a link activation_url?email=...&activation_token=....

Registration has failed

{
 "error": "Reason why the user can not be registered (e.g. duplicate email)."
}

Example

URL: https://api.mediacloud.org/api/v2/auth/register

Input:

{
 "email": "foo@bar.baz",
 "password": "qwerty1",
 "full_name": "Foo Bar",
 "notes": "Just feeling like it.",
 "subscribe_to_newsletter": 1,
 "activation_url": "https://dashboard.mediacloud.org/activate"
}

Output:

{
 "success": 1
}

api/v2/auth/activate (POST)

URL	Function
———————-	———————————————————————–
api/v2/auth/activate	Activate user using email and activation token from registration email.

Required role

admin.

Input Description

Field	Description
——————	——————————————
email	(string) Email of user to be activated.
activation_token	(string) Activation token sent by email.

Output Description

Activating the user was successful

{
 "success": 1,
 "profile": {
 "Full profile information as in auth/profile."
 }
}

Activating the user has failed

{
 "error": "Reason why user activation has failed."
}

Example

URL: https://api.mediacloud.org/api/v2/auth/activate

Input:

{
 "email": "foo@bar.baz",
 "activation_token": "3a0e7de3ba8e19227847b59e43f2ce54c98ec897"
}

Output:

{
 "success": 1,
 "profile": {
 "Full profile information as in auth/profile."
 }
}

api/v2/auth/resend_activation_link (POST)

URL	Function
————————————	————————————————–
api/v2/auth/resend_activation_link	Resend activation email for newly registered user.

Required role

admin.

Input Description

Field	Description
—————-	————————————————————————–
email	(string) Email of newly created user to resend the activation email to.
activation_url	(string) Client’s URL used for user account activation.

For the description of activation_url, see auth/register.

Output Description

Resending the activation email was successful

{
 "success": 1
}

Resending the activation email has failed

{
 "error": "Reason why the activation email can not be resent."
}

Example

URL: https://api.mediacloud.org/api/v2/auth/resend_activation_link

Input:

{
 "email": "foo@bar.baz",
 "activation_url": "https://dashboard.mediacloud.org/activate"
}

Output:

{
 "success": 1
}

Reset password

api/v2/auth/send_password_reset_link (POST)

URL	Function
————————————–	——————————————————–
api/v2/auth/send_password_reset_link	Email a link to user to be used to reset their password.

Required role

admin.

Input Description

Field	Description
——————–	————————————————————
email	(string) Email of user to send the password reset link to.
password_reset_url	(string) Client’s URL used for setting new password.

User will be send an email with a link to password_reset_url and the following GET parameters:

	email – user’s email to be used as a parameter to auth/reset_password;

	password_reset_token – user’s password reset token to be used as a parameter to auth/reset_password.

Output Description

Sending the password reset link was successful

{
 "success": 1
}

After successful send password reset API call, user is sent an email inviting him to open a link password_reset_url?email=...&password_reset_token=....

Sending the password reset link has failed

{
 "error": "Reason why the password reset link can not be sent."
}

Example

URL: https://api.mediacloud.org/api/v2/auth/send_password_reset_link

Input:

{
 "email": "foo@bar.baz",
 "password_reset_url": "https://dashboard.mediacloud.org/reset_password"
}

Output:

{
 "success": 1
}

api/v2/auth/reset_password (POST)

URL	Function
—————————-	———————————————————————————————–
api/v2/auth/reset_password	Reset user’s password using their password reset token send by auth/send_password_reset_link.

Required role

admin.

Input Description

Field	Description
———————-	————————————————–
email	(string) Email of user to reset the password to.
password_reset_token	(string) Password reset token sent by email.
new_password	(string) User’s new password.

Output Description

Resetting the user’s password was successful

{
 "success": 1
}

Resetting the user’s password has failed

{
 "error": "Reason why the password can not be reset."
}

Example

URL: https://api.mediacloud.org/api/v2/auth/reset_password

Input:

{
 "email": "foo@bar.baz",
 "password_reset_token": "3a0e7de3ba8e19227847b59e43f2ce54c98ec897",
 "new_password": "qwerty1"
}

Output:

{
 "success": 1
}

Log in

api/v2/auth/login (POST)

URL	Function
——————-	——————————————————————————
api/v2/auth/login	Authenticate user with email + password and return user’s API key and profile.

API call is rate-limited.

Required role

admin-read.

Input Description

Parameter	Notes
———-	————————————-
email	(string) Email address of the user.
password	(string) Password of the user.

Output Description

User was found

{
 "success": 1,
 "profile": {
 "Full profile information as in auth/profile."
 }
}

User was not found

{
 "error": "User was not found, password is incorrect, user is inactive or some other reason."
}

Example

URL: https://api.mediacloud.org/api/v2/auth/login

Input:

{
 "email": "user@email.com",
 "password": "qwerty1"
}

Output:

{
 "success": 1,
 "profile": {
 "Full profile information as in auth/profile."
 }
}

User Profile

api/v2/auth/profile (GET)

URL	Function
———————–	—————————————————–
api/v2/auth/profile	Return profile information about the requesting user.

Required role

search.

Output Description

{
 "email": "(string) users@email.address",
 "full_name": "(string) User's Full Name",
 "api_key": "(string) User's API key.",
 "notes": "(string) User's 'notes' field.",
 "created_date": "(ISO 8601 date) of when the user was created.",
 "active": "(integer) 1 if user is active (has activated account via email), 0 otherwise.",
 "auth_roles": [
 "(string) user-role-1",
 "(string) user-role-2"
],
 "limits": {
 "weekly": {
 "requests": {
 "used": "(integer) Weekly request count",
 "limit": "(integer) Weekly request limit; 0 if no limit"
 },
 "requested_items": {
 "used": "(integer) Weekly requested items count",
 "limit": "(integer) Weekly requested items limit; 0 if no limit"
 }
 }
 }
}

Includes a list of authentication roles for the user that give the user permission to access various parts of the backend web interface and some of the private API functionality (that for example allow editing and administration of Media Cloud’s sources).

Media Cloud currently includes the following authentication roles:

Role	Permission Granted
—————-	—————————————————————-
admin	Read and write every resource
admin-readonly	Read every resource
media-edit	Edit media sources
stories-edit	Edit stories
search	Access https://core.mediacloud.org/search page
tm	Access legacy topic mapper web interface
tm-readonly	Access legacy topic mapper web interface with editing privileges

Example

URL: https://api.mediacloud.org/api/v2/auth/profile

{
 "email": "hroberts@cyber.law.harvard.edu",
 "full_name": "Hal Roberts",
 "api_key": "bae132d8de0e0565cc9b84ec022e367f71f6dabf",
 "notes": "Media Cloud Geek",
 "created_date": "2017-03-24T03:23:47+00:00",
 "active": 1,
 "auth_roles": [
 "media-edit",
 "stories-edit"
],
 "limits": {
 "weekly": {
 "requests": {
 "used": 200,
 "limit": 0
 },
 "requested_items": {
 "used": 2000,
 "limit": 0
 }
 }
 }
}

api/v2/auth/change_password (POST)

URL	Function
—————————–	———————–
api/v2/auth/change_password	Change user’s password.

Required role

search.

Input Description

Field	Description
————–	——————————-
old_password	(string) User’s old password.
new_password	(string) User’s new password.

Asking user to re-enter password and comparing the two values is left to the client.

Output Description

Changing the user’s password was successful

{
 "success": 1
}

Changing the user’s password has failed

{
 "error": "Reason why the password can not be changed."
}

Example

URL: https://api.mediacloud.org/api/v2/auth/change_password

Input:

{
 "old_password": "qwerty1",
 "new_password": "qwerty1",
}

Output:

{
 "success": 1
}

api/v2/auth/reset_api_key (POST)

URL	Function
—————————	———————
api/v2/auth/reset_api_key	Reset user’s API key.

Required role

search.

Output Description

Resetting user’s API key was successful

{
 "success": 1,
 "profile": {
 "Full profile information as in auth/profile, including the new API key."
 }
}

Resetting user’s API key has failed

{
 "error": "Reason why resetting user's API key has failed."
}

Example

URL: https://api.mediacloud.org/api/v2/auth/reset_api_key

Output:

{
 "success": 1,
 "profile": {
 "Full profile information as in auth/profile, including the new API key."
 }
}

Stats

api/v2/stats/list

| URL | Function
| ———————– | —————–
| api/v2/stats/list | Return basic summary stats about total sources, stories, feeds, etc processed by Media Cloud

Query Parameters

(none)

Output Description

Field	Description
total_stories	total number of stories in the Media Cloud database
total_downloads	total number of downloads (including stories and feeds) in the Media Cloud database
total_sentences	total number of sentences in the Media Cloud database
active_crawled_feeds	number of syndicated feeds with a story in the last 180 days
active_crawled_media	number of media source with an active crawled feed
daily_stories	number of stories added yesterday
daily_downloads	number of downloads added yesterday

Example

URL: https://api.mediacloud.org/api/v2/stats/list

{
 "total_stories": 516145344,
 "total_downloads": 941078656,
 "total_sentences": 6899028480,
 "active_crawled_media": 123,
 "active_crawled_feeds": 123,
 "daily_stories": 123,
 "daily_downloads": 123,
}

Util

api/v2/util/is_syndicated_ap (POST)

Detect whether a given block of content is likely to be ap syndicated content by looking for certain signals in the text
(for example ‘boston (ap)’) and by comparing the text to the text of ap content in the Media Cloud database.

Input Description

| Field | Description
| —————— | —————————————————————-
| content | text or html content

Output Description

| Field | Description
| —————————- | —————————————————————————–
| is_syndicated | 1 if the story is syndicated, 0 otherwise

Example

URL: https://api.mediacloud.org/api/v2/util/is_syndicated_ap

Input:

{
 "content": "WASHINGTON (AP) -- Republican Sen. Marco Rubio declared Thursday he will vote against the GOP'S sweeping tax package unless negotiators expand its child tax credit, jeopardizing the Republicans' razor-thin margin as they try to muscle the $1.5 trillion bill through Congress next week."
}

{
 "is_syndicated": 1
}

Extended Examples

Note: The Python examples below are included for reference purposes. However, a Python client [https://github.com/c4fcm/MediaCloud-API-Client] for our API is now available and most Python users will find it much easier to use the API client instead of making web requests directly.

Output Format / JSON

The format of the API responses is determined by the Accept header on the request. The default is application/json. Other supported formats include text/html, text/x-json, and text/x-php-serialization. It’s recommended that you explicitly set the Accept header rather than relying on the default.

Here’s an example of setting the Accept header in Python:

import pkg_resources

import requests
assert pkg_resources.get_distribution("requests").version >= '1.2.3'

r = requests.get('https://api.mediacloud.org/api/v2/media/list',
 params = params,
 headers = { 'Accept': 'application/json'},
 headers = { 'Accept': 'application/json'}
)

data = r.json()

Create a CSV file with all media sources.

media = []
start = 0
rows = 100
while True:
 params = { 'start': start, 'rows': rows, 'key': MY_KEY }
 print "start:{} rows:{}".format(start, rows)
 r = requests.get('https://api.mediacloud.org/api/v2/media/list', params = params, headers = { 'Accept': 'application/json'})
 data = r.json()

 if len(data) == 0:
 break

 start += rows
 media.extend(data)

fieldnames = [
 u'media_id',
 u'url',
 u'name'
]

with open('/tmp/media.csv', 'wb') as csvfile:
 print "open"
 cwriter = csv.DictWriter(csvfile, fieldnames, extrasaction='ignore')
 cwriter.writeheader()
 cwriter.writerows(media)

Grab all processed stories from US Mainstream Media as a stream

This is broken down into multiple steps for convenience and because that’s probably how a real user would do it.

The you almost always want to search by a specific media source or media collection. The easiest way to find a relevant media
collection is to use our Sources Tool [https://sources.mediameter.org]. The URL for a the US Mainstream Media media collection in
the sources tool looks like this:

https://sources.mediameter.org/#media-tag/8875027/details

The number in that URL is the tags_id of the media collection.

Grab stories by querying stories_public/list

We can obtain all stories by repeatedly querying api/v2/stories_public/list using the q parameter to restrict to tags_id_media=8875027 and changing the last_processed_stories_id parameter.

This is shown in the Python code below where process_stories is a user provided function to process this data.

import requests

start = 0
rows = 100
while True:
 params = { 'last_processed_stories_id': start, 'rows': rows, 'q': 'tags_id_media:8875027', 'key': MY_KEY }

 print "Fetching {} stories starting from {}".format(rows, start)
 r = requests.get('https://api.mediacloud.org/api/v2/stories_public/list/', params = params, headers = { 'Accept': 'application/json'})
 stories = r.json()

 if len(stories) == 0:
 break

 start = stories[-1]['processed_stories_id']

 process_stories(stories)

Grab all stories in The New York Times during October 2012

Find the media_id of The New York Times

Currently, the best way to do this is to create a CSV file with all media sources as shown in the earlier example.

Once you have this CSV file, manually search for The New York Times. You should find an entry for The New York Times at the top of the file with media_id=1.

Grab stories by querying stories_public/list

We can obtain the desired stories by repeatedly querying api/v2/stories_public/list using the q parameter to restrict to media_id to 1 and the fq parameter to restrict by date range. We repeatedly change the last_processed_stories_id parameter to obtain all stories.

This is shown in the Python code below where process_stories is a user provided function to process this data.

import requests

start = 0
rows = 100
while True:
 params = {
 'last_processed_stories_id': start,
 'rows': rows,
 'q': 'media_id:1',
 'fq': 'publish_date:[2010-10-01T00:00:00Z TO 2010-11-01T00:00:00Z]',
 'key': MY_KEY
 }

 print "Fetching {} stories starting from {}".format(rows, start)
 r = requests.get('https://api.mediacloud.org/api/v2/stories_public/list/', params = params, headers = { 'Accept': 'application/json'})
 stories = r.json()

 if len(stories) == 0:
 break

 start = stories[-1]['processed_stories_id']

 process_stories(stories)

Get word counts for top words for sentences matching ‘trayvon’ in US Mainstream Media during April 2012

Find the media collection

As above, find the tags_id of the US Mainstream Media collection (8875027).

Make a request for the word counts based on tags_id_media, sentence text and date range

One way to appropriately restrict the data is by setting the q parameter to restrict by sentence content and then the fq parameter twice to restrict by tags_id_media and publish_date.

Below q is set to "text:trayvon" and fq is set to "tags_iud_media:8875027" and "publish_date:[2012-04-01T00:00:00.000Z TO 2013-05-01T00:00:00.000Z]". (Note that “:”, “[“, and “]” are URL encoded.)

curl 'https://api.mediacloud.org/api/v2/wc?q=text:trayvon&fq=tags_iud_media:8875027&fq=publish_date:%5B2012-04-01T00:00:00.000Z+TO+2013-05-01T00:00:00.000Z%5D'

Alternatively, we could use a single large query by setting q to "text:trayvon AND tags_id_media:8875027 AND publish_date:[2012-04-01T00:00:00.000Z TO 2013-05-01T00:00:00.000Z]":

curl 'https://api.mediacloud.org/api/v2/wc?q=text:trayvon+AND+tags_id_media:8875027+AND+publish_date:%5B2012-04-01T00:00:00.000Z+TO+2013-05-01T00:00:00.000Z%5D&fq=tags_id_media:8875027&fq=publish_date:%5B2012-04-01T00:00:00.000Z+TO+2013-05-01T00:00:00.000Z%5D'

Get word counts for top words for sentences with the tag 'odd' in tag_set = 'ts'

Find the tag_sets_id for 'ts'

The user requests a list of all tag sets.

curl https://api.mediacloud.org/api/v2/tag_sets/list

[
 {
 "tag_sets_id": 597,
 "name": "gv_country"
 },
 {
 "tag_sets_id": 800,
 "name": "ts"
 }
]

(Additional tag sets skipped for brevity.)

Looking through the output, the user sees that the tag_sets_id is 800.

Find the tags_id for 'odd' given the tag_sets_id

The following Python function shows how to find a tags_id given a tag_sets_id

def find_tags_id(tag_name, tag_sets_id):
 last_tags_id = 0
 rows = 100
 while True:
 params = { 'last_tags_id': last_tags_id, 'rows': rows, 'key': MY_KEY }
 print "start:{} rows:{}".format(start, rows)
 r = requests.get('https://api.mediacloud.org/api/v2/tags/list/' + tag_sets_id , params = params, headers = { 'Accept': 'application/json'})
 tags = r.json()

 if len(tags) == 0:
 break

 for tag in tags:
 if tag['tag'] == tag_name:
 return tag['tags_id']

 last_tags_id = max(tag['tags_id'], last_tags_id)

 return -1

Request a word count using the tags_id

Assume that the user determined that the tags_id was 12345678 using the above code. The following will return
the word count for all sentences in stories belonging to any media source associated with tag 12345678.

curl 'https://api.mediacloud.org/api/v2/wc?q=tags_id_media:12345678'

Grab stories from 10 January 2014 with the tag 'foo:bar'

Find the tag_sets_id for 'foo'

See the “Get Word Counts for Top Words for Sentences with the Tag 'odd' in tag_set = 'ts'” example above.

Find the tags_id for 'bar' given the tag_sets_id

See the “Get Word Counts for Top Words for Sentences with the Tag 'odd' in tag_set = 'ts'” example above.

Grab stories by querying stories_public/list

We assume the tags_id is 678910.

import requests

start = 0
rows = 100
while True:
 params = { 'last_processed_stories_id': start, 'rows': rows, 'q': 'tags_id_stories:678910', 'key': MY_KEY }

 print "Fetching {} stories starting from {}".format(rows, start)
 r = requests.get('https://api.mediacloud.org/api/v2/stories_public/list/', params = params, headers = { 'Accept': 'application/json'})
 stories = r.json()

 if len(stories) == 0:
 break

 start = stories[-1]['processed_stories_id']

 process_stories(stories)

Table of Contents

	Overview

	Media Cloud Crawler and Core Data Structures

	Topic Data Structures

	API URLs

	Snapshots, Timespans, and Foci

	Paging

	Examples

	Permissions

	Topics

	topics/create (POST)

	Query Parameters

	Input Description

	Example

	topics/<

topics_id>

/update (PUT)

	Query Parameters

	Input Description

	Example

	topics/<

topics_id>

/reset (PUT)

	Query Parameters

	Input Description

	Example

	topics/<

topics_id>

/spider (POST)

	Query Parameters

	Output Description

	Example

	topics/<

topics_id>

/spider_status

	Query Parameters

	Output Description

	Example

	topics/list

	Query Parameters

	Output Description

	Example

	topics/single/<

topics_id>

	Query Parameters

	Output Description

	Example

	Permissions

	topics/permissions/user/list

	Query Parameters

	Output Description

	Example

	topics/<

topics_id>

/permissions/list

	Query Parameters

	Output Description

	Example

	topics/<

topics_id>

/permissions/update (PUT)

	Query Parameters

	Input Description

	Output Description

	Example

	Stories

	stories/list

	Query Parameters

	Output Description

	stories/links

	Query Parameters

	Output Description

	Example

	stories/facebook

	Query Parameters

	Output Description

	Example

	stories/count

	Query Parameters

	Output Description

	Example

	Sentences

	sentences/count

	Media

	media/list

	Query Parameters

	Output Description

	Example

	media/links

	Query Parameters

	Output Description

	Example

	media/map

	Query Parameters

	Output Description

	Example

	Word Counts

	wc/list

	Foci

	Focal Techniques

	Focal Technique: Boolean Query

	focal_set_definitions/create (POST)

	Query Parameters

	Input Description

	Example

	focal_set_definitions/<

focal_set_definitions_id>

/update (PUT)

	Query Parameters

	Input Parameters

	Example

	focal_set_definitions/<

focal_set_definitions_id>

/delete (PUT)

	Query Parameters

	Output Description

	Example

	focal_set_definitions/list

	Query Parameters

	Output Description

	Example

	focal_sets/list

	Query Parameters

	Output Description

	Example

	focus_definitions/create (POST)

	Query Parameters

	Input Description

	Example

	focus_definitions/<

focus_definitions_id>

/update (PUT)

	Query Parameters

	Input Description

	Example

	focus_definitions/<

focus_definitions_id>

/delete (PUT)

	Query Parameters

	Output Description

	Example

	focus_definitions/list

	Query Parameters

	Output Description

	Example

	foci/list

	Query Parameters

	Ouput Description

	Example

	Snapshots

	snapshots/generate (POST)

	Query Parameters

	Input Description

	Output Description

	Example

	snapshots/generate_status

	Query Parameters

	Input Description

	Output Description

	Example

	snapshots/list

	Query Paramaters

	Output Description

	Example

	snapshots/<

snapshots_id>

/word2vec_model/<

models_id>

 (GET)

	Required role

	Output Description

	Model was fetched

	Failed to fetch the model

	Example

	Timespans

	timespans/list

	Query Parameters

	Output Description

	Example

Overview

This document described the Media Cloud Topics API. The Topics API is a subset of the larger Media Cloud API. The Topics API provides access to data about Media Cloud Topics and related data. For a fuller understanding of Media Cloud data structures and for information about Authentication, Request Limits, the API Python Client, and Errors, see the documentation for the main [link: main api] Media Cloud API.

The topics API is currently under development and is available only to Media Cloud team members and select beta testers. Email us at info@mediacloud.org if you would like to beta test the Topics API.

A topic currently may be created only by the Media Cloud team, though we occasionally run topics for external researchers.

Media Cloud Crawler and Core Data Structures

The core Media Cloud data are stored as media, feeds, and stories.

A medium (or media source) is a publisher, which can be a big mainstream media publisher like the New York Times, an
activist site like fightforthefuture.org, or even a site that does not publish regular news-like stories, such as Wikipedia.

A feed is a syndicated feed (RSS, RDF, ATOM) from which Media Cloud pulls stories for a given media source. A given
media source may have anywhere from zero feeds (in which case we do not regularly crawl the site for new content) up
to hundreds of feeds (for a site like the New York Times to make sure we collect all of its content).

A story represents a single published piece of content within a media source. Each story has a unique URL within
a given media source, even though a single story might be published under multiple urls. Media Cloud tries
to deduplicate stories by title.

The Media Cloud crawler regularly downloads every feed within its database and parses out all URLs from each feed.
It downloads every new URL it discovers and adds a story for that URL, as long as the story is not a duplicate for
the given media source. The Media Cloud archive consists primarily of stories collected by this crawler.

Topic Data Structures

A Media Cloud topic is a set of stories relevant to some subject. The topic spider starts by searching for a
set of stories relevant to the story within the Media Cloud archive and then spiders URLs from those
stories to find more relevant stories, then iteratively repeats the process 15 times.

After the spidering is complete, a topic consists of a set of relevant stories, links between those stories, the
media that published those stories, and social media metrics about the stories and media. The various topics /
end points provide access to all of this raw data as well as various of various analytical processes applied to this
data.

API URLs

All URLs in the topics API are in the form:

https://api.mediacloud.org/api/v2/topics/<topics_id>/stories/list

For example, the following will return all stories in the latest snapshot of topic id 1344.

https://api.mediacloud.org/api/v2/topics/1344/stories/list

Snapshots, Timespans, and Foci

Each topic is viewed through one of its snapshots. A snapshot is static dump of all data from a topic at
a given point in time. The data within a snapshot will never change, so changes to a topic are not visible
until a new snapshot is made.

Within a snapshot, data can be viewed overall, or through some combination of a focus and a timespan.

A focus consists of a subset of stories within a topic defined by some user configured focal technique. For
example, a ‘trump’ focus within a ‘US Election’ topic would be defined using the ‘Boolean Query’ focal technique
as all stories matching the query ‘trump’. Each individual focus belongs to exactly one focal set. A focal set
provides a way of collecting together foci for easy comparison to one another.

A timespan displays the topic as if it exists only of stories either published within the date range of the
timespan or linked to by a story published within the date range of the timespan.

Topics, snapshots, foci, and timespans are strictly hierarchical. Every snapshot belongs to a single
topic. Every focus belongs to a single snapshot, and every timespan belongs to either a single focus or the
null focus. Specifying a focus implies the parent snapshot of that focus. Specifying a timespan implies the
parent focus (and by implication the parent snapshot), or else the null focus within the parent snapshot.

	topic

	snapshot

	focus

	timespan

Every URL that returns data from a topic accepts optional spanshots_id, timespans_id, and foci_id parameters.

If no snapshots_id is specified, the call returns data from the latest snapshot generated for the topic. If no
timespans_id is specified, the call returns data from the overall timespan of the given snapshot and focus. If
no foci_id is specified, the call assumes the null focus. If multiple of these parameters are specified,
they must point to the same topic / snapshot / focus / timespan or an error will be returned (for instance, a
call that specifies a snapshots_id for a snapshot in a topic different from the one specified in the URL, an error
will be returned).

Paging

For calls that support paging, each URL supports a limit parameter and a link_id parameter. For these calls, only
limit results will be returned at a time, and a set of link_ids will be returned along with the results. To get the
current set of results again, or the previous or next page of results, call the same end point with only the key and
link_id parameters. The link_id parameter includes state that remembers all of the parameters from the original
call.

For example, the following is a paged response:

{
 "stories":
 [
 {
 "stories_id": 168326235,
 "media_id": 18047,
 "collect_date": "2013-10-26 09:25:39",
 "publish_date": "2012-10-24 16:09:26",
 "inlink_count": 531,
 "language": "en",
 "title": "Donald J. Trump (realDonaldTrump) on Twitter",
 "url": "https://twitter.com/realDonaldTrump",
 "outlink_count": 0,
 "guid": "https://twitter.com/realDonaldTrump"
 }
],
 "link_ids":
 {
 "current": 123456,
 "previous": 456789,
 "next": 789123
 }
}

After receiving that response, you can use the following URL with no other parameters to fetch the next page of results:

https://api.mediacloud.org/api/v2/topics/1/stories/list?link_id=789123

When the system has reached the end of the results, it will return an empty list and a null ‘next’ link_id.

link_ids are persistent — they can be safely used to refer to a given result forever (for instance, as an identifier for a link shortener).

Examples

The section for each end point includes an example call and response for that end point. For end points that return multiple results, we generally only show a single result (for instance a single story) for the sake of documentation brevity. All Input examples are JSON documents.

Permissions

The topics API assigns read, write, and admin permissions to individual users. Read permission allows the given user to view all data within the topic. Write permission grants read permission and also allows the user to perform all operations on the topic – including spidering, snapshotting, and merging — other editing permissions. Admin permission grants write permission and also allows all the user to edit the permissions for the topic.

Each topic also has an ‘public’ flag. If that flag is set to true, then all users will have implicit read permission for that topic.

Permssions for the authenticated user for a given topic are included in the topics/list and topics/single calls (note that a given topic will not be visible in either call if the authenticated user does not have read permission for it). Other calls to list and read permissions are available from the permissions/ end points.

Topics

Topics are collections of stories within some date range that match some pattern indicating that they belong to some topic. Topics both stories matched from crawled Media Cloud content and stories discovered by spidering out from the links of those matched stories. For more information about topics and how they are generated, see:

http://cyber.law.harvard.edu/publications/2013/social_mobilization_and_the_networked_public_sphere

A single topic is the umbrella object that represents the whole topic. A snapshot
is a frozen version of the data within a topic that keeps a consistent view of a topic
for researchers and also includes analytical results like link counts. A timespan
represents the set of stories active in a topic within a given date range. Every timespan belongs to a snapshot.

Topic data can be used to search stories and media sources as well. Use the
timespans_id param to list the media sources within a given timespan. See the documentation for Solr pseudo queries for documentation of how to
query for stories within a topic.

topics/create (POST)

https://api.mediacloud.org/api/v2/topics/create

Create and return a new topic.

Query Parameters

(no parameters)

Input Description

The topics/create call accepts as input the following fields described in the Output Description of the topics/list call: name, solr_seed_query, description, max_iterations, start_date, end_date, is_public, is_logogram, ch_monitor_id, twitter_topics_id, media_ids, media_tags_ids, max_stories, is_story_index_ready. Required fields are: name, solr_seed_query, description, start_date, end_date, media_ids and media_tags_ids. Either media_ids or media_tags_ids must be included and not be an empty list.

Example

Create a new topic:

https://api.mediacloud.org/api/v2/topics/create

Input:

{
 "name": "immigration 2015",
 "description": "immigration coverage during 2015",
 "solr_seed_query": "immigration AND (+publish_date:[2016-01-01T00:00:00Z TO 2016-06-15T23:59:59Z]) AND tags_id_media:8875027",
 "max_iterations": 15,
 "start_date": "2015-01-01",
 "end_date": "2015-12-31",
 "is_public": 1,
 "is_logogram": 0,
 "is_story_index_ready": 0,
 "media_tags_ids": [123],
 "max_stories": 50000
}

Response:

{
 "topics":
 [
 {
 "topics_id": 1390,
 "name": "immigration 2015",
 "description": "immigration coverage during 2015",
 "pattern": "[[:<:]]immigration",
 "solr_seed_query": "immigration AND (+publish_date:[2016-01-01T00:00:00Z TO 2016-06-15T23:59:59Z]) AND tags_id_media:8875027",
 "max_iterations": 15,
 "start_date": "2015-01-01",
 "end_date": "2015-12-31",
 "state": "created but not queued",
 "is_public": 1,
 "is_story_index_ready": 0,
 "max_stories": 50000,
 "job_queue": "public",
 "media_tags":
 [
 {
 "tags_id": 123,
 "topics_id": 1390,
 "tag": "us_msm",
 "label": "US Mainstream Media",
 "description": "major US mainstream media sources"
 }
]
 }
]
}

topics/<topics_id>/update (PUT)

https://api.mediacloud.org/api/v2/topics/<topics_id>/update

Edit an existing topic.

This api call will generate an error if update attempts to remove existing dates, media sources, or media source tags
from a topic that has spidered content or has a currently active spidering job. If the solr seed query, dates, media
sources, or media source tags are updated (without generating an error), all impacted stories will be marked for
respidering during the next spidering run.

Editing a query is allowed for a topic that has already started spidering, but editing a query to reduce its scope
will not remove any stories from the existing topic and so will likely result in non-sensical results.

Query Parameters

(no parameters)

Input Description

Accepts the same input as the topics/create call.

Example

Edit the ‘immigration 2015’ topic.

https://api.mediacloud.org/api/v2/topics/1390/update

Input:

{
 "name": "immigration coverage in 2015"
}

Response:

{
 "topics":
 [
 {
 "topics_id": 1390,
 "name": "immigration coverage in 2015",
 "description": "immigration coverage during 2015",
 "pattern": "[[:<:]]immigration",
 "solr_seed_query": "immigration AND (+publish_date:[2016-01-01T00:00:00Z TO 2016-06-15T23:59:59Z]) AND tags_id_media:8875027",
 "max_iterations": 15,
 "start_date": "2015-01-01",
 "end_date": "2015-12-31",
 "state": "queued",
 "is_public": 1,
 "media_tags":
 [
 {
 "tags_id": 123,
 "topics_id": 1390,
 "tag": "us_msm",
 "label": "US Mainstream Media",
 "description": "major US mainstream media sources"
 }
]
 }
]
}

topics/<topics_id>/reset (PUT)

https://api.mediacloud.org/api/v2/topics/~topics_id~/reset

Delete all existing stories, links, and seed urls from an existing topic. Set the topic state to
‘created but not queued’ and the message to null.

This call should be used with caution. After executing this call, no stories or links will remain in the topic, so
the topic will need to be entirely respidered before another snapshot is made. Data in existing snapshots will
not be impacted in any way by this call.

This call will return an error if it is run on a topic with a state of ‘running’.

Query Parameters

(no parameters)

Input Description

(no input)

Example

Reset the ‘immigration 2015’ topic.

https://api.mediacloud.org/api/v2/topics/1390/reset

Response:

{
 "success": 1
}

topics/<topics_id>/spider (POST)

https://api.mediacloud.org/api/v2/topics/<topics_id>/spider

Start a topic spidering job.

Topic spidering is asynchronous. Once the topic has started spidering, you cannot start another spidering job until the current one is complete. A call to this end point when a ‘running’ or ‘queued’ job already exists for the given topic
will just return the state of the existing job.

Query Parameters

(no parameters)

Output Description

The call returns a job_state record with information about the state of the queued spidering job.

Example

Start a topic spider for the ‘U.S. 2016 Election’ topic:

https://api.mediacloud.org/api/v2/topics/spider

Input:

{ "topics_id": 1404 }

Response:

{
 "job_state":
 {
 "topics_id": 1404,
 "job_states_id": 1,
 "last_updated": "2017-01-26 14:27:04.781095",
 "message": null,
 "state": "queued"
 }
}

topics/<topics_id>/spider_status

https://api.mediacloud.org/api/v2/topics/<topics_id>/spider_status

Get a list all spidering jobs started for this topic.

Query Parameters

| Parameter | Default | Notes |
|-|-|
| topics_id | (required) | topic id |

Output Description

Field	Description
——–	—————————————-
state	one of queued, running, completed, or error
message	more detailed message about the job state
last_updated	date of last state change
topics_id	id of media being scraped

Example

https://api.mediacloud.org/api/v2/topics/1404/spider_status

Response:

{
 "job_states": [
 {
 "topics_id": 1404,
 "job_states_id": 1,
 "last_updated": "2017-01-26 14:27:04.781095",
 "message": null,
 "state": "queued"
 }
]
}

topics/list

https://api.mediacloud.org/api/v2/topics/list

The topics/list call returns a simple list of topics available in Media Cloud. The call will only return topics for
which the calling user has read or higher permissions.

The topics/list call is is only call that does not include a topics_id in the URL.

Query Parameters

Parameter	Default	Notes
name	null	return only topics with a name including the parameter value
public	null	return only topics for which is_public is true
limit	20	number of topics to return for each call

Standard parameters accepted: link_id.

Output Description

Field	Description
——————-	—————————————-
topics_id	topic id
name	human readable label
pattern	regular expression derived from Solr query
solr_seed_query	Solr query used to generate seed stories
solr_seed_query_run	boolean indicating whether the Solr seed query has been run to seed the topic
description	human readable description
max_iterations	maximum number of iterations for spidering
start_date	start of date range for topic
end_date	end of date range for topic
state	the current status of the spidering process
message	last error message generated by the spider, if any
is_public	flag indicating whether this topic is readable by all authenticated users
is_logogram	flag indicating whether this topic uses a query in a logogram language
is_story_index_ready	flag indicating whether this topic has been confirmed by the user to be ready for running on the story index
user_permission	permission for user submitting the API request: ‘read’, ‘write’, ‘admin’, or ‘none’
queue	which job pool the topic runs in – ‘mc’ for internal media cloud jobs and ‘public’ for public jobs
max_stories	max number of stories allowed in the topic
owners	list of users with ‘admin’ permissions for the topic

Example

Fetch all topics in Media Cloud:

https://api.mediacloud.org/api/v2/topics/list

Response:

{
 "topics":
 [
 {
 "topics_id": 672,
 "name": "network neutrality",
 "patern": "[[:<:]]net.*neutrality",
 "solr_seed_query": "net* and neutrality and +tags_id_media:(8875456 8875460 8875107 8875110 8875109 8875111 8875108 8875028 8875027 8875114 8875113 8875115 8875029 129 2453107 8875031 8875033 8875034 8875471 8876474 8876987 8877928 8878292 8878293 8878294 8878332) AND +publish_date:[2013-12-01T00:00:00Z TO 2015-04-24T00:00:00Z]",
 "solr_seed_query_run": 1,
 "description": "network neutrality",
 "max_iterations": 15,
 "start_date": "2013-12-01",
 "end_date": "2015-04-24",
 "state": "ready",
 "error_message": "",
 "is_public": 0,
 "is_logogram": 0,
 "is_logogram": 0,
 "is_story_index_ready": 1,
 "user_permission": "admin",
 "queue": "mc",
 "max_stories": 100000,
 "owners":
 [
 {
 "auth_users_id": 1,
 "email": "hroberts@cyber.law.harvard.edu",
 "full_name": "Hal Roberts",
 "topics_id": 672,
 }
]
 }
],
 "link_ids":
 {
 "current": 123456,
 "previous": 456789,
 "next": 789123
 }

}

topics/single/<topics_id>

https://api.mediacloud.org/api/v2/topics/single/<topics_id>

The topics/single call returns a single topic, if the calling user has permission to read that topic.

Query Parameters

(no parameters)

Output Description

(see topics/list)

Example

Fetch a single topic:

https://api.mediacloud.org/api/v2/topics/single/672

Response:

{
 "topics":
 [
 {
 "topics_id": 672,
 "name": "network neutrality",
 "patern": "[[:<:]]net.*neutrality",
 "solr_seed_query": "net* and neutrality and +tags_id_media:(8875456 8875460 8875107 8875110 8875109 8875111 8875108 8875028 8875027 8875114 8875113 8875115 8875029 129 2453107 8875031 8875033 8875034 8875471 8876474 8876987 8877928 8878292 8878293 8878294 8878332) AND +publish_date:[2013-12-01T00:00:00Z TO 2015-04-24T00:00:00Z]",
 "solr_seed_query_run": 1,
 "description": "network neutrality",
 "max_iterations": 15,
 "start_date": "2013-12-01",
 "end_date": "2015-04-24",
 "state": "ready",
 "error_message": "",
 "public": 0,
 "user_permission": "admin",
 "queue": "mc",
 "max_stories": 100000,
 "owners":
 [
 {
 "auth_users_id": 1,
 "email": "hroberts@cyber.law.harvard.edu",
 "full_name": "Hal Roberts",
 "topics_id": 672,
 }
]
 }
]
}

Permissions

topics/permissions/user/list

https://api.mediacloud.org/api/v2/topics/permissions/user/list

List all permissions assigned to the authenticated user for all topics. This list includes only permissions granted specifically to this user. Topics available for reading through the ‘public’ flag are not included in this list.

Query Parameters

(no parameters)

Output Description

Field	Description
———-	:—————————————
email	email of user granted permission
topics_id	id of topic to which permission is granted
permission	‘read’, ‘write’, or ‘admin’

Example

List all permissions belonging to the authenticated user:

https://api.mediacloud.org/api/v2/topics/permissions/user/list

Response:

{
 "permissions":
 [
 {
 "email": "hroberts@cyber.law.harvard.edu",
 "topics_id": 1390,
 "permission": "admin"
 }
]
}

topics/<topics_id>/permissions/list

https://api.mediacloud.org/api/v2/topics/<topics_id>/permissions/list

List all permissions for the given topic.

Query Parameters

(no parameters)

Output Description

(see permissions/user/list)

Example

List all permissions belonging to the given topic:

https://api.mediacloud.org/api/v2/topics/1394/permissions/list

Response:

{
 "permissions":
 [
 {
 "email": "hroberts@cyber.law.harvard.edu",
 "topics_id": 1390,
 "permission": "admin"
 },
 {
 "email": "foo@foo.bar",
 "topics_id": 1390,
 "permission": "read"
 }

]
}

topics/<topics_id>/permissions/update (PUT)

https://api.mediacloud.org/api/v2/topics/<topics_id>/permissions/update

Update permissions for a given user to a given topic.

Query Parameters

(no parameters)

Input Description

Field	Description
———-	—————————————-
email	email of user whose permission is to be updated
permission	‘read’, ‘write’, ‘admin’, or ‘none’

Only one permission can exist for a given topic for a given user. Specify ‘none’ to remove all permissions for the given topic for the given user.

Output Description

On success, the new permission is returned in the same format as the permissions/list_users end point. On failure, an error is returned.

Example

Update the permissions for a given user for a given topic:

https://api.mediacloud.org/api/v2/topics/<topics_id>/permissions/update

Input:

{
 "email": "foo@foo.bar",
 "permission": "read"
}

Response:

{
 "permissions":
 [
 {
 "email": "foo@foo.bar",
 "topics_id": 1390,
 "permission": "read"
 }
]
}

Stories

stories/list

https://api.mediacloud.org/api/v2/topics/<topics_id>/stories/list

The stories list call returns stories in the topic.

Query Parameters

Parameter	Default	Notes
——————–	——-	—————————————-
q	null	if specified, return only stories that match the given Solr query
sort	inlink	possible values: inlink, facebook, twitter
stories_id	null	return only stories matching these stories_ids
link_to_stories_id	null	return only stories from other media that link to the given stories_id
link_from_stories_id	null	return only stories from other media that are linked from the given stories_id
link_to_media_id	null	return only stories that link to stories in the given media
link_from_media_id	null	return only stories that are linked from stories in the given media_id
media_id	null	return only stories belonging to the given media_ids
limit	20	return the given number of stories
link_id	null	return stories using the paging link

The call will return an error if more than one of the following parameters are specified: q, link_to_stories, link_from_stories_id. The stories_id and media_id parameters can be specified more than once to include stories from more than stories_id / media_id.

The sort parameter will determine the order in which the stories are returned. The twitter sort parameter
will return randomly ordered results unless the topic is a twitter topic.

For a detailed description of the format of the query specified in q parameter, see the entry for stories_public/list in the main API spec.

Standard parameters accepted: snapshots_id, foci_id, timespans_id, limit, link_id.

Output Description

Field	Description
——————–	—————————————-
stories_id	story id
media_id	media source id
media_name	media source name
url	story URL
title	story title
guid	story globally unique identifier
language	two letter code for story language
publish_date	publication date of the story, or ‘undateable’ if the story is not dateable
date_is_reliable	boolean indicating whether the date_guess_method is nearly 100% reliable
collect_date	date the story was collected
inlink_count	count of hyperlinks from stories in other media in this timespan
outlink_count	count of hyperlinks to stories in other media in this timespan
facebook_share_count	number of facebook shares for this story’s URL
foci	list of foci to which this story belongs
Example

Fetch all stories in topic id 1344:

https://api.mediacloud.org/api/v2/topics/1344/stories/list

Response:

{
 "stories":
 [
 {
 "stories_id": 168326235,
 "media_id": 18047,
 "collect_date": "2013-10-26 09:25:39",
 "publish_date": "2012-10-24 16:09:26",
 "date_guess_method": "guess_by_og_article_published_time",
 "inlink_count": 531,
 "language": "en",
 "title": "Donald J. Trump (realDonaldTrump) on Twitter",
 "url": "https://twitter.com/realDonaldTrump",
 "outlink_count": 0,
 "guid": "https://twitter.com/realDonaldTrump",
 "foci":
 [
 {
 "foci_id": 123,
 "name": "Trump",
 "focal_set_name": "Candidates"
 }
]
 }
],
 "link_ids":
 {
 "current": 123456,
 "previous": 456789,
 "next": 789123
 }
}

stories/links

https://api.mediacloud.org/api/v2/topics/<topics_id>/stories/links

Return all links between individual stories across media within the given topic.

Query Parameters

Standard parameters accepted : snapshots_id, foci_id, timespans_id, limit.

Output Description

Field	Description
—–	————————–
source_stories_id	id of the story hosting the link
ref_stories_id	id of the story that is the target of the link

Example

Return links for topic 1404:

https://api.mediacloud.org/api/v2/topics/1404/stories/links?limit=3

Response:

{
 "link_ids": {
 "current": 93724,
 "next": 93725
 },
 "links": [
 {
 "ref_stories_id": 7968288,
 "source_stories_id": 9387091
 },
 {
 "ref_stories_id": 8847769,
 "source_stories_id": 9387091
 },
 {
 "ref_stories_id": 169996079,
 "source_stories_id": 9387091
 }
]
}

stories/facebook

https://api.mediacloud.org/api/v2/topics/<topics_id>/stories/facebook

Return the current facebook counts for all stories in the topic. Note that this call returns the current
facebook count data, which may change over time, rather than the snapshotted, static data returned by the
stories/list call.

Query Parameters

Standard parameters accepted : snapshots_id, foci_id, timespans_id, limit.

Output Description

Field	Description
—–	————————–
stories_id	story id
facebook_share_count	share count from facebook
facebook_comment_count	comment count from facebook
facebook_api_collect_date	data on which count data was collected from facebook

Example

Return the facebook counts for 3 stories in the given topic.

https://api.mediacloud.org/api/v2/topics/1404/stories/facebook?limit=3

Response:

{
 "counts" : [
 {
 "facebook_api_collect_date" : "2016-11-25 04:45:35.636022",
 "facebook_comment_count" : 0,
 "facebook" : 0,
 "stories_id" : 737
 },
 {
 "facebook_api_collect_date" : "2016-11-13 11:35:35.657778",
 "facebook_comment_count" : 0,
 "facebook" : 0,
 "stories_id" : 2884
 },
 {
 "facebook_api_collect_date" : "2016-11-13 11:35:35.783757",
 "facebook_comment_count" : 0,
 "facebook" : 0,
 "stories_id" : 3994
 }
],
 "link_ids" : {
 "current" : 21797,
 "next" : 21798
 }
}

stories/count

https://api.mediacloud.org/api/v2/topics/<topics_id>/stories/count

Return the number of stories that match the query.

Query Parameters

Parameter	Default	Notes
———	——-	———————————–
q	null	count stories that match this query

For a detailed description of the format of the query specified in q parameter, see the entry for stories_public/list [https://github.com/berkmancenter/mediacloud/blob/release/doc/api_2_0_spec/api_2_0_spec.md#apiv2stories_publiclist] in the main API spec.

Standard parameters accepted : snapshots_id, foci_id, timespans_id, limit.

Output Description

Field	Description
—–	————————–
count	number of matching stories

Example

Return the number of stories that mention ‘immigration’ in the ‘US Election’ topic:

https://api.mediacloud.org/api/v2/topics/<topics_id>/stories/count?q=immigration

Response:

{ "count": 123 }

Sentences

sentences/count

https://api.mediacloud.org/api/v2/topics/<topics_id>/sentences/count

Return the numer of sentences that match the query, optionally split by date.

This call behaves exactly like the main API sentences/count call, except:

	This call only searches within the given snapshot

	This call accepts the standard topics parameters: snapshots_id, foci_id, timespans_id

For details about this end point, including parameters, output, and examples, see the main API [https://github.com/berkmancenter/mediacloud/blob/release/doc/api_2_0_spec/api_2_0_spec.md#apiv2sentencescount].

Media

media/list

https://api.mediacloud.org/api/v2/topics/<topics_id>/media/list

The media list call returns the list of media in the topic.

Query Parameters

Parameter	Default	Notes
———	——-	—————————————-
media_id	null	return only the specified media
sort	inlink	possible values: inlink, facebook, twitter
name	null	search for media with the given name
limit	20	return the given number of media
link_id	null	return media using the paging link
q	null	return media with at least one matching story

The media_id field can be specified multiple times to return a list of matching media sources.

If the name parameter is specified, the call returns only media sources that match a case insensitive search specified value. If the specified value is less than 3 characters long, the call returns an empty list.

If the q parameter is specified, the call returns only media sources for which at least one story matches the given solr query.

The sort parameter will determine the order in which the stories are returned. The twitter sort parameter
will return randomly ordered results unless the topic is a twitter topic.

Standard parameters accepted: snapshots_id, foci_id, timespans_id, limit, link_id.

Output Description

Field	Description
——————–	—————————————-
media_id	medium id
name	human readable label for medium
url	medium URL
story_count	number of stories in medium
inlink_count	sum of the inlink_count for each story in the medium
outlink_count	sum of the outlink_count for each story in the medium
facebook_share_count	sum of the facebook for each story in the medium
focus_ids	list of ids of foci to which this medium belongs
media_source_tags	list of associated tags

Example

Return all stories in the medium that match ‘twitt’:

https://api.mediacloud.org/api/v2/topics/<topics_id>/media/list?name=twitt

Response:

{
 "media":
 [
 {
 "media_id": 18346,
 "story_count": 3475,
 "name": "Twitter",
 "inlink_count": 8454,
 "url": "http://twitter.com",
 "outlink_count": 72,
 "facebooki_share_count": 123,
 "media_source_tags":
 {
 "description": "Published in United States",
 "label": "United States"
 "media_id": 18364,
 "show_on_media": true,
 "show_on_stories": null,
 "tag": "pub_USA",
 "tag_set": "pub_country",
 "tag_sets_id": 1935,
 "tagged_date": null,
 "tags_id": 9353663
 },
 }
],
 "link_ids":
 {
 "current": 123456,
 "previous": 456789,
 "next": 789123
 }
}

media/links

https://api.mediacloud.org/api/v2/topics/<topics_id>/media/links

Return all links between individual media within the given topic.

Query Parameters

Standard parameters accepted : snapshots_id, foci_id, timespans_id, limit.

Output Description

Field	Description
—–	————————–
source_media_id	id of the medium hosting the link
ref_media_id	id of the medium that is the target of the link

Example

Return links for topic 1404:

https://api.mediacloud.org/api/v2/topics/1404/media/links?limit=3

Response:

{
 "links": [
 {
 "ref_media_id": 2,
 "source_media_id": 1
 },
 {
 "ref_media_id": 3,
 "source_media_id": 1
 },
 {
 "ref_media_id": 6,
 "source_media_id": 1
 }
],
 "link_ids": {
 "current": 95189,
 "next": 95190
 },
}

media/map

https://api.mediacloud.org/api/v2/topics/<topics_id>/media/map

The media list call returns a gexf formatted network map of the media in the topic / timespan.

Query Parameters

Parameter	Default	Notes
———	——-	—————————————-
color_field	media_type	node coloring; possible values: partisan_retweet, partisan_code, media_type
num_media	500	number of media to map, sorted by media inlinks
include_weights	false	include weights on edges (default is to use a weight of 1 for every edge)
num_links_per_medium	null	if set, only inclue the top num_links_per_media out links from each medium, sorted by medium_link_counts.link_count and then inlink_count of the target medium

Standard parameters accepted: snapshots_id, foci_id, timespans_id.

Output Description

Output is a gexf formatted file, as described here:

https://gephi.org/gexf/format/

Example

Return the network map for topic id 12:

https://api.mediacloud.org/api/v2/topics/12/media/map

Word Counts

wc/list

https://api.mediacloud.org/api/v2/topics/<topics_id>/wc/list

Returns sampled counts of the most prevalent words in a topic, optionally restricted to sentences that match a given query.

This call behaves exactly like the main API wc/list call, except:

	This call only searches within the given snapshot

	This call accepts the standard topics parameters: snapshots_id, foci_id, timespans_id

For details about this end point, including parameters, output, and examples, see the main API [https://github.com/berkmancenter/mediacloud/blob/release/doc/api_2_0_spec/api_2_0_spec.md#apiv2wclist].

Foci

A focus is a set of stories identified through some focal technique. focal sets are sets of foci that share a focal technique and are also usually some substantive theme determined by the user. For example, a ‘U.S. 2016 Election’ topic might include a ‘Candidates’ focal set that includes ‘trump’ and ‘clinton’ foci, each of which uses a ‘Boolean Query’ focal techniqueology to identify stories relevant to each candidate with a separate boolean query for each.

A specific focus exists within a specific snapshot. A single topic might have many ‘clinton’ foci, one for each snapshot. Each topic has a number of focus definion, each of which tells the system which foci to create each time a new snapshot is created. foci for new focus definitions will be only be created for snapshots created after the creation of the focus definition.

The relationship of these objects is shown below:

	topic

	snapshot

	focus

	timespan

Focal Techniques

Media Cloud currently supports the following focal techniques.

	Boolean Query

Details about each focal technique are below. Among other properties, each focal technique may or not be exclusive. Exlcusive focal techniques generate focal sets in which each story belongs to at most one focus.

Focal Technique: Boolean Query

The Boolean Query focal technique associates a focus with a story by matching that story with a Solr boolean query. focal sets generated by the Boolean Query method are not exclusive.

focal_set_definitions/create (POST)

https://api.mediacloud.org/api/topics/<topics_id>/focal_set_definitions/create

Create and return a new focal set definiition within the given topic.

Query Parameters

(no parameters)

Input Description

Field	Description
—————	—————————————-
name	short human readable label for focal set definition
description	human readable description of focal set definition
focal_technique	focal technique to be used for all focus definitions in this definition

Example

Create a ‘Candidates’ focal set definition in the ‘U.S. 2016 Election’ topic:

https://api.mediacloud.org/api/v2/topics/1344/focal_set_definitions/create

Input:

{
 "name": "Candidates",
 "description": "Stories relevant to each candidate.",
 "focal_techniques": "Boolean Query"
}

Response:

{
 "focal_set_definitions":
 [
 {
 "focal_set_definitions_id": 789,
 "topics_id": 456,
 "name": "Candidates",
 "description": "Stories relevant to each candidate.",
 "focal_technique": "Boolean Query",
 "is_exclusive": 0
 }
]
}

focal_set_definitions/<focal_set_definitions_id>/update (PUT)

https://api.mediacloud.org/api/v2/topics/<topics_id>/focal_set_definitions/<focal_set_definitions_id>/update/

Update the given focal set definition.

Query Parameters

(no parameters)

Input Parameters

See focal_set_definitions/create for a list of fields. Only fields that are included in the input are modified.

Example

Update the name and description of the ‘Candidates’ focal set”definition”:

https://api.mediacloud.org/api/v2/topics/1344/focal_set_definitions/789/update

Input:

{
 "name": "Major Party Candidates",
 "description": "Stories relevant to each major party candidate."
}

Response:

{
 "focal_set_definitions":
 [
 {
 "focal_set_definitions_id": 789,
 "topics_id": 456,
 "name": "Major Party Candidates",
 "description": "Stories relevant to each major party candidate.",
 "focal_technique": "Boolean Query",
 "is_exclusive": 0
 }
]
}

focal_set_definitions/<focal_set_definitions_id>/delete (PUT)

https://api.mediacloud.org/api/v2/topics/<topics_id>/focal_set_definitions/<focal_set_definitions_id>/delete

Delete a focal set definition.

Query Parameters

(no parameters)

Output Description

Field	Description
——-	—————————————-
success	boolean indicating that the focal set defintion was deleted.

Example

Delete focal_set_definitions_id 123:

https://api.mediacloud.org/api/v2/topics/<topics_id>/focal_set_definitions/123/delete

Response:

{ "success": 1 }

focal_set_definitions/list

https://api.mediacloud.org/api/v2/topics/<topics_id>/focal_set_definitions/list

Return a list of all focal set definitions belonging to the given topic.

Query Parameters

(no parameters)

Output Description

Field	Description
————————	—————————————-
focal_set_definitions_id	focal set defintion id
name	short human readable label for the focal set definition
description	human readable description of the focal set definition
focal_technique	focal technique used for foci in this set
is_exclusive	boolean that indicates whether a given story can only belong to one focus, based on the focal technique
focus_defitions	list of focus definitions belonging to this focal set definition

Example

List all focal set definitions associated with the ‘U.S. 2016 Elections‘“topic”:

https://api.mediacloud.org/api/v2/topics/1344/focal_set_definitions/list

Response:

{
 "focal_set_definitions":
 [
 {
 "focal_set_definitions_id": 789,
 "topics_id": 456,
 "name": "Major Party Candidates",
 "description": "Stories relevant to each major party candidate.",
 "focal_technique": "Boolean Query",
 "is_exclusive": 0
 "focus_definitions":
 [
 {
 "focus_definitions_id": 234,
 "name": "Clinton",
 "description": "stories that mention Hillary Clinton",
 "query": "clinton and (hillary or -bill)"
 }
]

 }
]
}

focal_sets/list

https://api.mediacloud.org/api/v2/topics/<topics_id>/focal_sets/list

List all focal sets belonging to the specified snapshot in the given topic.

Query Parameters

Standard parameters accepted: snapshots_id, frames_id, timespans_id.

If no snapshots_id is specified, the latest snapshot will be used. If foci_id or timespans_id is specified, the snapshot containining that focus or timespan will be used.

Output Description

Field	Description
—————	—————————————-
focal_sets_id	focal set id
name	short human readable label for the focal set
description	human readable description of the focal set
focal_technique	focal technique used to generate the foci in the focal set
is_exclusive	boolean that indicates whether a given story can only belong to one focus, based on the focal technique
foci	list of foci belonging to this focal set

Example

Get a list of focal sets in the latest snapshot in the ‘U.S. 2016 Election’ topic:

https://api.mediacloud.org/api/v2/topics/1344/focal_sets_list

Response:

{
 "focal_sets":
 [
 {
 "focal_sets_id": 34567,
 "name": "Candidates",
 "description": "Stories relevant to each candidate.",
 "focal_technique": "Boolean Query",
 "is_exclusive": 0,
 "foci":
 [
 {
 "foci_id": 234,
 "name": "Clinton",
 "description": "stories that mention Hillary Clinton",
 "query": "clinton and (hillary or -bill)",
 "focal_technique": "Boolean Query"
 }
]
 }
]
}

focus_definitions/create (POST)

https://api.mediacloud.org/api/topics/<topics_id>/focus_definitions/create

Create and return a new focus definition within the given topic and focal set definition.

Query Parameters

(no parameters)

Input Description

Field	Description
————————	—————————————-
name	short human readable label for foci generated by this definition
description	human readable description for foci generated by this definition
query	Boolean Query: query used to generate foci generated by this definition
focus_set_definitions_id	id of parent focus set definition

The input for the focus definition depends on the focal technique of the parent focal set definition. The focal technique specific input fields are listed last in the table above and are prefixed with the name of applicable focal technique.

Example

Create the ‘Clinton’ focus definition within the ‘Candidates’ focal set definition and the ‘U.S. 2016 Election’ topic:

https://api.mediacloud.org/api/v2/topics/1344/focus_definitions/create

Input:

{
 "name": "Clinton",
 "description": "stories that mention Hillary Clinton",
 "query": "clinton",
 "focal_set_definitions_id": 789
}

Response:

{
 "focus_definitions":
 [
 {
 "focus_definitions_id": 234,
 "name": "Clinton",
 "description": "stories that mention Hillary Clinton",
 "query": "clinton",
 "focal_technique": "Boolean Query"
 }
]
}

focus_definitions/<focus_definitions_id>/update (PUT)

https://api.mediacloud.org/api/v2/topics/<topics_id>/focus_definitions/<focus_definitions_id>/update

Update the given focus definition.

Query Parameters

(no parameters)

Input Description

See focus_definitions/create for a list of fields. Only fields that are included in the input are modified.

Example

Update the query for the ‘Clinton’ focus definition:

https://api.mediacloud.org/api/v2/topics/1344/focus_definitions/234/update

Input:

{ "query": "clinton and (hillary or -bill)" }

Response:

{
 "focus_definitions":
 [
 {
 "focus_definitions_id": 234,
 "name": "Clinton",
 "description": "stories that mention Hillary Clinton",
 "query": "clinton and (hillary or -bill)"
 }
]
}

focus_definitions/<focus_definitions_id>/delete (PUT)

https://api.mediacloud.org/api/v2/topics/<topics_id>/focus_definitions/<focus_definitions_id>/delete

Delete a focus definition.

Query Parameters

(no parameters)

Output Description

Field	Description
——-	—————————————-
success	boolean indicating that the focus definition was deleted.

Example

Delete focus_definitions_id 123:

https://api.mediacloud.org/api/v2/topics/<topics_id>/focus_definitions/123/delete

Response:

{ "success": 1 }

focus_definitions/list

https://api.mediacloud.org/api/v2/topics/<topics_id>/focus_definitions/<focal_set_definitions_id>/list

List all focus definitions belonging to the given focal set definition.

Query Parameters

Parameter	Default	Notes
———————–	——-	—————————————-
focal_set_defintions_id	none	id of parent focal set definition - required

Output Description

Field	Description
——————–	—————————————-
focus_definitions_id	focus definition id
name	short human readable label for foci generated by this definition
description	human readable description for foci generated by this definition
query	Boolean Query: query used to generate foci generated by this definition

The output for focus definition depends on the focal technique of the parent focal set definition. The framing
method specific fields are listed last in the table above and are prefixed with the name of applicable focal technique.

Example

List all focus definitions belonging to the ‘Candidates’ focal set definition of the ‘U.S. 2016 Election’ topic:

https://api.mediacloud.org/api/v2/topics/1344/focus_definitions/234/list

Response:

{
 "focus_definitions":
 [
 {
 "focus_definitions_id": 234,
 "name": "Clinton",
 "description": "stories that mention Hillary Clinton",
 "query": "clinton and (hillary or -bill)"
 }
]
}

foci/list

https://api.mediacloud.org/api/v2/topics/<topics_id>/foci/list

Return a list of the foci belonging to the given focal set.

Query Parameters

Parameter	Default	Notes
————-	——-	————————————-
focal_sets_id	none	id of the parent focal set - required

Ouput Description

Field	Description
———–	—————————————-
foci_id	focus id
name	short human readable label for the focus
description	human readable description of the focus
query	Boolean Query: query used to generate the focus

The output for focus depends on the focal technique of the parent focus definition. The focal technique specific fields are listed last in the table above and are prefixed with the name of applicable focal technique.

Example

Get a list of foci wihin the ‘Candiates’ focal set of the ‘U.S. 2016 Election’ topic:

https://api.mediacloud.org/api/v2/topics/1344/foci/list?focal_sets_id=234

Response:

{
 "foci":
 [
 {
 "foci_id": 234,
 "name": "Clinton",
 "description": "stories that mention Hillary Clinton",
 "query": "clinton and (hillary or -bill)"
 }
]
}

Snapshots

Each snapshot contains a static copy of all data within a topic at the time the snapshot was made. All data viewable by the Topics API must be viewed through a snapshot.

snapshots/generate (POST)

https://api.mediacloud.org/api/v2/topics/<topics_id>/snapshots/generate

Generate a new snapshot for the given topic. Note that topics/spider will generate a snapshot as part of its
spidering process, so this end point only needs to be called to generate an additional snapshot of a topic
without also spidering (for instance after editing the foci definitions).

This is an asynchronous call. The snapshot process will run in the background, and the new snapshot will only become visible to the API once the generation is complete.

Query Parameters

(no parameters)

Input Description

Field	Description
—–	—————————————-
note	short text note about the snapshot; optional

Output Description

This command will return a job_state object as described in the snapshots/generate_status call below.

Example

Start a new snapshot generation job for the ‘U.S. 2016 Election’ topic:

https://api.mediacloud.org/api/v2/topics/1344/snapshots/generate

Response:

{
 "job_state":
 {
 "topics_id": 1404,
 "job_states_id": 1,
 "last_updated": "2017-01-26 14:27:04.781095",
 "message": null,
 "state": "queued"
 }
}

snapshots/generate_status

https://api.mediacloud.org/api/v2/topics/<topics_id>/snapshots/generate_status

Return a list of snapshots job_states for the given snapshot;

Query Parameters

(no parameters)

Input Description

Field	Description
—–	—————————————-
note	short text note about the snapshot; optional

Output Description

Field	Description
——–	—————————————-
state	one of queued, running, completed, or error
message	more detailed message about the job state
last_updated	date of last state change
topics_id	id the topic being snapshotted

Example

List snapshot jobs for the ‘U.S. 2016 Election’ topic:

https://api.mediacloud.org/api/v2/topics/1344/snapshots/generate_status

Response:

{
 "job_states": [
 {
 "topics_id": 1404,
 "job_states_id": 1,
 "last_updated": "2017-01-27 14:27:04.781095",
 "message": null,
 "state": "completed"
 }
]
}

snapshots/list

https://api.mediacloud.org/api/v2/topics/<topics_id>/snapshots/list

Return a list of all completed snapshots in the given topic.

Query Paramaters

(no parameters)

Output Description

Field	Description
—————	————————————–
snapshots_id	snapshot id
snapshot_date	date on which the snapshot was created
note	short text note about the snapshot
state	state of the snapshotting process
message	more detailed message about the state of the snapshotting process
searchable	boolean indicating whether timespans are searchable yet
word2vec_models	List of word2vec models generated for the snapshot

The state indicates the state of the current snapshot process, including but not limited to ‘completed’ for a snapshot
whose process has successfully completed and ‘error’ for a snapshot that failed for some reason.

Each timespan in a snapshot is queued for text indexing when the snapshot is generated. This process may take a
few minutes up to a few hours. The ‘searchable’ field is set to true once that indexing process is complete.

Example

Return a list of snapshots in the ‘U.S. 2016 Election’ topic:

https://api.mediacloud.org/api/v2/topics/1344/snapshots/list

Response:

{
 "snapshots":
 [
 {
 "snapshots_id": 6789,
 "snapshot_date": "2016-09-29 18:14:47.481252",
 "note": "final snapshot for paper analysis",
 "state": "completed",
 "word2vec_models": [
 {
 "models_id": 1,
 "creation_date": "2018-01-31 20:59:57.559360"
 }
]
 }
]
}

snapshots/<snapshots_id>/word2vec_model/<models_id> (GET)

URL	Function
————————————————————————	————————————
topics/<topics_id>/snapshots/<snapshots_id>/word2vec_model/<models_id>	Download snapshots’s word2vec model.

Required role

topics_read.

Output Description

Model was fetched

Raw “word2vec C format” model data is returned as application/octet-stream, to be later loaded with:

import gensim

word_vectors = gensim.models.KeyedVectors.load_word2vec_format('model.bin', binary=True)

Failed to fetch the model

{
 "error": "Reason why the model can't be fetched."
}

Example

URL: https://api.mediacloud.org/api/v2/topics/6/snapshots/1/word2vec_model/1

Output: application/octet-stream model data of topic with topics_id=6, snapshot with snapshots_id=1, word2vec model with models_id=1.

Timespans

Each timespan is a view of the topic that presents the topic as if it consists only of stories within the date range of the given timespan.

A story is included within a timespan if the publish_date of the story is within the timespan date range or if the story is linked to by a story that whose publish_date is within date range of the timespan.

timespans/list

https://api.mediacloud.org/api/v2/topics/<topics_id>/timespans/list

Return a list of timespans in the current snapshot.

Query Parameters

Standard parameters accepted: snapshots_id, foci_id, timespans_id.

Output Description

Field	Description
—————–	—————————————-
timespans_id	timespan id
period	type of period covered by timespan; possible values: overall, weekly, monthly, custom
start_date	start of timespan date range
end_date	end of timespan date range
story_count	number of stories in timespan
story_link_count	number of cross media story links in timespan
medium_count	number of distinct media associated with stories in timespan
medium_link_count	number of cros media media links in timespan
model_r2_mean	timespan modeling r2 mean
model_r2_stddev	timespan modeling r2 standard deviation
model_num_media	number of media include in modeled top media list
foci_id	id of focus to which the timespan belongs
snapshots_id	id of snapshot to which the timespan belongs

Every topic generates the following timespans for every snapshot:

	overall - an timespan that includes every story in the topic

	custom all - a custom period timespan that includes all stories within the date range of the topic

	weekly - a weekly timespan for each calendar week in the date range of the topic

	monthly - a monthly timespan for each calendar month in the date range of the topic

Media Cloud needs to guess the date of many of the stories discovered while topic spidering. We have validated the date guessing to be about 87% accurate for all methods other than the finding a URL in the story URL. The possiblity of significant date errors make it possible for the Topic Mapper system to wrongly assign stories to a given timespan and to also miscount links within a given timespan (due to stories getting misdated into or out of a given timespan). To mitigate the risk of drawing the wrong research conclusions from a given timespan, we model what the timespan might look like if dates were wrong with the frequency that our validation tell us that they are wrong within a given timespan. We then generate a pearson’s correlation between the ranks of the top media for the given timespan in our actual data and in each of ten runs of the modeled data. The model_* fields provide the mean and standard deviations of the square of those correlations.

Example

Return all timespans associated with the latest snapshot of the ‘U.S. 2016 Election’ topic:

https://api.mediacloud.org/api/v2/topics/1344/timespans/list

Response:

{
 "timespans":
 [
 {
 "timespans_id": 6789,
 "period": "overall",
 "start_date": "2016-01-01",
 "end_date": "2016-12-01",
 "story_count": 10283,
 "story_link_count": 543,
 "medium_count": 2345,
 "medium_link_count": 1543,
 "model_r2_mean": 0.94,
 "model_r2_stddev": 0.04,
 "model_num_media": 143,
 "foci_id": null,
 "snapshots_id": 456
 }
]
}

gh-md-toc

gh-md-toc — is for you if you want to generate TOC for README.md or
GitHub’s wiki page and don’t want to install any additional software.

It’s my try to fix a problem:

	github/issues/215 [https://github.com/isaacs/github/issues/215]

gh-md-toc is able to process:

	stdin

	local files (markdown files in local file system)

	remote files (html files on github.com)

gh-md-toc tested on Ubuntu only. If you want it on Mac OS X or Windows you
better to use a golang based implementation:

	github-markdown-toc.go [https://github.com/ekalinin/github-markdown-toc.go]

It’s more solid, reliable and with ability of a parallel processing. And
absolutely without dependencies.

[image: Build Status] [https://travis-ci.org/ekalinin/github-markdown-toc]

Table of contents

	gh-md-toc

	Table of contents

	Installation

	Usage

	STDIN

	Local files

	Remote files

	Multiple files

	Combo

	Tests

	Dependency

Installation

$ wget https://raw.githubusercontent.com/ekalinin/github-markdown-toc/master/gh-md-toc
$ chmod a+x gh-md-toc

Usage

STDIN

Here’s an example of TOC creating for markdown from STDIN:

➥ cat ~/projects/Dockerfile.vim/README.md | ./gh-md-toc -
 * [Dockerfile.vim](#dockerfilevim)
 * [Screenshot](#screenshot)
 * [Installation](#installation)
 * [OR using Pathogen:](#or-using-pathogen)
 * [OR using Vundle:](#or-using-vundle)
 * [License](#license)

Local files

Here’s an example of TOC creating for a local README.md:

➥ ./gh-md-toc ~/projects/Dockerfile.vim/README.md Вс. марта 22 22:51:46 MSK 2015

Table of Contents
=================

 * [Dockerfile.vim](#dockerfilevim)
 * [Screenshot](#screenshot)
 * [Installation](#installation)
 * [OR using Pathogen:](#or-using-pathogen)
 * [OR using Vundle:](#or-using-vundle)
 * [License](#license)

Remote files

And here’s an example, when you have a README.md like this:

	README.md without TOC [https://github.com/ekalinin/envirius/blob/f939d3b6882bfb6ecb28ef7b6e62862f934ba945/README.md]

And you want to generate TOC for it.

There is nothing easier:

➥ ./gh-md-toc https://github.com/ekalinin/envirius/blob/master/README.md

Table of Contents
=================

 * [envirius](#envirius)
 * [Idea](#idea)
 * [Features](#features)
 * [Installation](#installation)
 * [Uninstallation](#uninstallation)
 * [Available plugins](#available-plugins)
 * [Usage](#usage)
 * [Check available plugins](#check-available-plugins)
 * [Check available versions for each plugin](#check-available-versions-for-each-plugin)
 * [Create an environment](#create-an-environment)
 * [Activate/deactivate environment](#activatedeactivate-environment)
 * [Activating in a new shell](#activating-in-a-new-shell)
 * [Activating in the same shell](#activating-in-the-same-shell)
 * [Get list of environments](#get-list-of-environments)
 * [Get current activated environment](#get-current-activated-environment)
 * [Do something in environment without enabling it](#do-something-in-environment-without-enabling-it)
 * [Get help](#get-help)
 * [Get help for a command](#get-help-for-a-command)
 * [How to add a plugin?](#how-to-add-a-plugin)
 * [Mandatory elements](#mandatory-elements)
 * [plug_list_versions](#plug_list_versions)
 * [plug_url_for_download](#plug_url_for_download)
 * [plug_build](#plug_build)
 * [Optional elements](#optional-elements)
 * [Variables](#variables)
 * [Functions](#functions)
 * [Examples](#examples)
 * [Example of the usage](#example-of-the-usage)
 * [Dependencies](#dependencies)
 * [Supported OS](#supported-os)
 * [Tests](#tests)
 * [Version History](#version-history)
 * [License](#license)
 * [README in another language](#readme-in-another-language)

That’s all! Now all you need — is copy/paste result from console into original
README.md.

And here is a result:

	README.md with TOC [https://github.com/ekalinin/envirius/blob/24ea3be0d3cc03f4235fa4879bb33dc122d0ae29/README.md]

Moreover, it’s able to work with GitHub’s wiki pages:

➥ ./gh-md-toc https://github.com/ekalinin/nodeenv/wiki/Who-Uses-Nodeenv

Table of Contents
=================

 * [Who Uses Nodeenv?](#who-uses-nodeenv)
 * [OpenStack](#openstack)
 * [pre-commit.com](#pre-commitcom)

Multiple files

It supports multiple files as well:

➥ ./gh-md-toc \
 https://github.com/aminb/rust-for-c/blob/master/hello_world/README.md \
 https://github.com/aminb/rust-for-c/blob/master/control_flow/README.md \
 https://github.com/aminb/rust-for-c/blob/master/primitive_types_and_operators/README.md \
 https://github.com/aminb/rust-for-c/blob/master/unique_pointers/README.md

 * [Hello world](https://github.com/aminb/rust-for-c/blob/master/hello_world/README.md#hello-world)

 * [Control Flow](https://github.com/aminb/rust-for-c/blob/master/control_flow/README.md#control-flow)
 * [If](https://github.com/aminb/rust-for-c/blob/master/control_flow/README.md#if)
 * [Loops](https://github.com/aminb/rust-for-c/blob/master/control_flow/README.md#loops)
 * [For loops](https://github.com/aminb/rust-for-c/blob/master/control_flow/README.md#for-loops)
 * [Switch/Match](https://github.com/aminb/rust-for-c/blob/master/control_flow/README.md#switchmatch)
 * [Method call](https://github.com/aminb/rust-for-c/blob/master/control_flow/README.md#method-call)

 * [Primitive Types and Operators](https://github.com/aminb/rust-for-c/blob/master/primitive_types_and_operators/README.md#primitive-types-and-operators)

 * [Unique Pointers](https://github.com/aminb/rust-for-c/blob/master/unique_pointers/README.md#unique-pointers)

Combo

You can easily combine both ways:

➥ ./gh-md-toc \
 ~/projects/Dockerfile.vim/README.md \
 https://github.com/ekalinin/sitemap.s/blob/master/README.md

 * [Dockerfile.vim](~/projects/Dockerfile.vim/README.md#dockerfilevim)
 * [Screenshot](~/projects/Dockerfile.vim/README.md#screenshot)
 * [Installation](~/projects/Dockerfile.vim/README.md#installation)
 * [OR using Pathogen:](~/projects/Dockerfile.vim/README.md#or-using-pathogen)
 * [OR using Vundle:](~/projects/Dockerfile.vim/README.md#or-using-vundle)
 * [License](~/projects/Dockerfile.vim/README.md#license)

 * [sitemap.js](https://github.com/ekalinin/sitemap.js/blob/master/README.md#sitemapjs)
 * [Installation](https://github.com/ekalinin/sitemap.js/blob/master/README.md#installation)
 * [Usage](https://github.com/ekalinin/sitemap.js/blob/master/README.md#usage)
 * [License](https://github.com/ekalinin/sitemap.js/blob/master/README.md#license)

Created by [gh-md-toc](https://github.com/ekalinin/github-markdown-toc)

Tests

Done with bats [https://github.com/sstephenson/bats].
Useful articles:

	https://blog.engineyard.com/2014/bats-test-command-line-tools

	http://blog.spike.cx/post/60548255435/testing-bash-scripts-with-bats

How to run tests:

➥ make test Пн. марта 23 13:59:27 MSK 2015
 ✓ TOC for local README.md
 ✓ TOC for remote README.md
 ✓ TOC for mixed README.md (remote/local)
 ✓ TOC for markdown from stdin
 ✓ --help
 ✓ --version

6 tests, 0 failures

Dependency

	curl or wget

	awk (mawk, gawk is not supported)

	grep

	sed

	bats (for unit tests)

Tested on Ubuntu 14.04/14.10 in bash/zsh.

The command foo1

Blabla…

The command foo2 is better

Blabla…

The command bar1

Blabla…

The command bar2 is better

Blabla…

The command bar3 is the best

Blabla…

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

